[Tweets]

10/12/2018 7:08pm
RT @karpathy: Incredible NeurIPS talk from @drmichaellevin on "Bioelectric Computation Outside the Nervous System" [LINK]
06/12/2018 6:39pm
We are looking for 2x part-time Java developers to work on an awesome editor for a multi-agent systems modelling la… [LINK]
06/12/2018 5:12pm
Excited to announce that we have been awarded the @EPSRC Impact Accelerator Kickstarter Award in collaboration with… [LINK]
03/12/2018 8:39pm
RT @BristolRobotLab: Cafe opens in Tokyo staffed by robots controlled by paralyzed people [LINK] via @RocketNews24En

[Accepted to the ECAL 2013 A-Life conference]

Multi-agent systems Robots Added on 22/06/2013

The paper 'Controling Ant-Based Construction' that I recently wrote in cooperation with my supervisor Seth Bullock has now been accepted to the ECAL 2013 conference. The work is about a simulation of 2D ant nest building, where different nest shapes are made by providing suitable templates to the colony.

I am very excited as not only this is my very first conference I will go to, but also there will be a lot of presentations and workshops about robotics and artificial life! The conference is at the beginning of September, just in time to finish my Summer project (that is about robot foraging this time).

Comments

Nick
[25/11/2014]


Awesome!


{Please enable JavaScript in order to post comments}

Creeper

Creeper is a Java MVC framework for those who want to create multi-agent simulations (or games) and need something to build on. Creeper takes care of effective updating and rendering. You only need to specify the world objects and how they should look like.

Controlling Ant-Based Construction

Stigmergy allows insect colonies to collectively build structures that no single individual is fully aware of. Since relatively minimal sensory and reasoning capabilities are required of the agents, such building activity could be utilised by robotic swarms if we could learn how to control the shape of the final structures.

Foraging Strategies in Nature and Their Application to Swarm Robotics

While foraging is a task often experimented with in swarm robotics, it is often the case that foraging strategies inspired by nature are chosen without careful consideration. Foraging strategies including solitary foraging, behavioural matching, stigmergy, signaling to guide others and coordinated and cooperative hunting are identified and their implementation costs in robots, as well as their suitability for different scenarios is discussed.

The Centralised Mindset and Complexity Science

Humans tend to explain decentralised phenomena as being caused by a single entity. This way of thinking is often referred to as 'the centralised mindset'. Several authors propose that using programming environments where creation of decentralised agent-based systems is easy...

pyCreeper

The main purpose of pyCreeper is to wrap tens of lines of python code, required to produce graphs that look good for a publication, into functions. It takes away your need to understand various quirks of matplotlib and gives you back ready-to-use and well-documented code.

Novelty detection with robots using the Grow-When-Required Neural Network

The Grow-When-Required Neural Network implementation in simulated robot experiments using the ARGoS robot simulator.