

Towards Design Patterns for Robot Swarms

Lenka Pitonakova, Richard Crowder and Seth Bullock

Agents, Interaction and Complexity Group

Towards Design Patterns for Robot Swarms

- What are design patterns
- Our simulation approach
- Swarms in simple environments
- Information value
- Swarms in dynamic environments
- Design pattern principles and example

Swarm Robotics

- Currently there is no precise method of selecting robot behaviour for swarms
- In OO software engineering, design patterns help with system design

Swarm Robotics

- Swarm robotics could benefit too:
 - Implicit understanding of collective intelligence
 - Modularity of behaviours
 - Mission-specific implementation

Our Approach

- 3D simulations with realistic physics
- Parameter sweeps: robots, environment
- Detailed performance analysis
- Information flow analysis
- Information-to-work cost analysis
- Design pattern creation

Simulation work

- Environment variations:
 - Maintenance vs Foraging
 - Different number of tasks
 - $V_T = 100 / N_T$
 - Tasks of different utilities
 - Dynamic tasks

Simulation work

- Swarm types:
 - Solitary: no communication
 - Local Broadcasters: recruit near tasks
 - Bee Swarms: recruit in the base
- Swarm parameters:
 - Behaviour-specific
 - Different number of robots

- Static tasks of the same utility
- Which swarm obtains all the reward the fastest?
- More tasks
 - -> smaller task return + easier to find
 - -> solitary foraging favoured
- Less tasks
 - -> bigger task return but harder to find
 - -> recruitment favoured

Completion time, Solitary robots vs. Local broadcasters vs. Bee swarm

Maintenance, 25 robots

Winners	Num of tasks	Max distance	Task reward
	25	5	4
	25	9	4
	25	13	4
	25	17	4
	25	21	4
	4	5	25
	4	9	25
	4	13	25
	4	17	25
	4	21	25
	2	5	50
	2	9	50
	2	13	50
	2	17	50
	2	21	50
	1	5	100
	1	9	100
	1	13	100
	1	17	100
	1	21	100

Foraging, 25 robots

Winners	Num of tasks	Max distance	Task reward
	25	5	4
	25	9	4
	25	13	4
	25	17	4
	25	21	4
	4	5	25
	4	9	25
	4	13	25
	4	17	25
[too difficult]	4	21	25
	2	5	50
	2	9	50
	2	13	50
	2	17	50
[too difficult]	2	21	50
	1	5	100
	1	9	100
	1	13	100
	1	17	100
[too difficult]	1	21	100

- Robot-robot interference:
 - Physical

Environmental

- More robots
 - -> more communication
 - -> communication effects (good and bad!) more pronounced
 - -> winning strategies more environment-specific

Completion time, Solitary robots vs. Local broadcasters vs. Bee swarm

Foraging, 10 robots

Winners	Num of tasks	Max distance	Task reward
	25	5	4
	25	9	4
	25	13	4
	25	17	4
	25	21	4
	4	5	25
	4	9	25
	4	13	25
	4	17	25
	4	21	25
	2	5	50
	2	9	50
	2	13	50
	2	17	50
	2	21	50
	1	5	100
	1	9	100
	1	13	100
	1	17	100
	1	21	100

Foraging, 50 robots

Winners	Num of tasks	Max distance	Task reward
	25	5	4
	25	9	4
	25	13	4
	25	17	4
	25	21	4
	4	5	25
	4	9	25
	4	13	25
	4	17	25
	4	21	25
	2	5	50
	2	9	50
	2	13	50
	2	17	50
	2	21	50
	1	5	100
	1	9	100
	1	13	100
	1	17	100
	1	21	100

Information value

- What is the value of new information for a robot?
 - Reward that can be extracted from a task per volume unit, compared to a reward the robot would receive using some old information
- $I = U_{new} U_{old}$
- For scouts and unemployed robots, $I = U_{new}$
- For recruited robots, it can be positive or negative

Information value

Foraging, 25 deposits, 25 solitary robots

Information value

Foraging, 25 deposits, 25 bee swarm robots

• Bee swarm able to choose between tasks of different utilities to maximise reward during foraging

- EE = u/d
- 'Beggers'
 - Robots in the base compare EE of their own tasks to that of other robots and can switch
 - Deplete the best task quickly, then move to another
- · 'Checkers'
 - Robots abandon a task if its EE dropped
 - Spread across tasks more evenly
 - Faster response to environmental change

2 nearby deposits with changing utility, number of loadings from deposits

- (a) 25 Beggers
- (b) 25 Checkers

 Based on information value, we can identify swarm work modes

Switching (Long-range checkers, 2 deposits, 25 robots, D=9m)

 Based on information value, we can identify swarm work modes

 Based on information value, we can identify swarm work modes

Locked (Long-range beggers, 2 deposits, 25 robots, D=9m)

 Based on information value, we can identify swarm work modes

Information value: General findings

- The correct information flow, given a particular environment, promotes swarm plasticity
- Across a range of environments, different swarm types have different likelihoods to exhibit plasticity
 - Faster information flow -> better performance but likelihood of plasticity is sacrificed

The perception-action loop

The perception-action loop

- How can we match swarm behaviour to environment in order to minimise costs and maximise work?
- Design patterns

Design patterns

- Modular
 - How to navigate an unknown environment
 - Where and when is information transferred
 - How does old information gets updated

Design patterns

- Specified by
 - Unambiguous name
 - Problem
 - Solution
 - Parameters
 - Trade-offs
 - (Effects when combined with other patterns)

Information exchange centre

- Problem: how to let other robots know about tasks?
- Solution: define a meeting place where robots can exchange information. Unsuccessful scouts come to this place to meet with successful scouts.
- Parameters:
 - Scouting time
 - 'Recruitment' time

Information exchange centre

- Trade-offs
 - Promotes spatio-temporal synchronisation of robot work (good when tasks are hard to find, or for cooperative tasks)
 - Potential high cost of traveling to tasks if the IEC is far away (not suitable for maintenance missions)
 - Low values of scouting time and high values of recruitment time cause poor exploration of the environment (hard to calibrate for environments of unknown size)

Current work...

- Additional experiments
 - Stigmergy-based recruitment (ants)
 - Dynamic environments
 - Tasks that require cooperation
- Visualisation of relationships between robot states, data and the environment
- Creation and classification of design patterns

Thank you. Questions?