Southampton

School of Electronics and Computer Science

Understanding the Role of Recruitment in Collective Robot Foraging

Lenka Pitonakova, Richard Crowder and Seth Bullock

Agents, Interaction and Complexity Group

Foraging in nature

Solitary

Dispersed food

Collective

Food patches

Robot foraging

- When should we invest money and time into collective robot foraging,
 - i.e., using robot-robot recruitment?
- What side effects will communication have?
- When is it NOT a good idea for robots to recruit each other?

Our simulation: Environment

- Continuous space / time
- 4000×4000 units large
- Base in the middle
 - with beacon
- Deposits around
- A deposit has:
 - Volume *V*
 - Quality Q
 - Net return = $V \times Q$

Our simulation: Robots

Individualists: I-Swarm

- Random walk
- Load resource and get its energy efficiency EE
- Bring it back to the base
- Return to the deposit location
 - Using odometry
 - Neighbourhood search

 $EE > EE_{min}$

Our simulation: Robots

Bee inspired recruitment: B-Swarm

- Can be recruited to another robot's deposit if it has higher EE
- Periodically make trips to the base if random walk is unsuccessful
 - Get information from successful returning foragers

Robot-robot interference

Physical

Environmental

Informational

I-Swarm and the environment

- robots, 100-300 deposits

 Too many robots => physic
- Too many robots => physical interference

Best performance for 30-75

- Too many deposits => environmental interference
- Too few robots or deposits => hard to find anything

Proportion of collected resource

Litter and puddles

Litter

- 100 deposits, V=2
- Uniform deposit quality

•

Puddles

- 10 deposits, V=20
- Uniform deposit quality

Litter and puddles

- Litter: I-Swarm consistently better <= informational interference
- Puddles: B-Swarm better <= more return trips possible

Stones and minerals

Stones

- 100 deposits, V=2
- 10 patches of better quality
- Deposits far away

Minerals

- 10 deposits, V=20
- 5 deposits of better quality
- Deposits far away

Stones and minerals

- Stones: B-Swarm slight benefit from recruitment to a general location
- Minerals: B-Swarm better but needs to be large enough

Nectar and cargo

Nectar

- 100 deposits, V=2
- 10 deposit groups of 10
- 3 groups of better quality

Cargo

- 10 deposits, V=20
- Single deposit group of 10
- Uniform deposit quality

Nectar and cargo

- Nectar: B-Swarms of moderate size rapidly deplete resource groups, but find new groups hard to locate
- Cargo: Ideal for B-Swarm

Emergent traffic management

• Congestion around the base created with I-Swarm of 100 when foraging in an environment with a lot of deposits

Emergent traffic management

• B-Swarm robots forage in groups => better flow of traffic

Odometry error

- Larger impact on B-Swarm when deposits are rare <= informational interference
- B-Swarm of 50 robots more susceptible than that of 20 robots
 - Harder to become an individualist

When to forage collectively

1. When resources are hard to find

- Initial collection time is important
- Collection of rare minerals, not picking up litter from streets

2. When congestion near the base is a problem

Emergent traffic management

When to forage individually

- 1. When resources are abundant
- 2. When reliability of information is low
- 3. Borderline cases
 - Extra behaviour = extra cost!

Example:

- Collecting nectar
- Total gain: £100,000
- I-Swarm robot costs £300

Current work in progress

- More realistic physical model needed
 - The ARGoS simulation platform
- B-Swarm unable to selectively forage from deposits of better energy efficiency
 - Give them a concentrated place to exchange information, like a dance floor in a bee hive?
- Dynamic environments
 - Other bee-like behaviours like scouting and inspection?

Current work in progress

- Are there any principles related to how information flows in a swarm that are applicable across swarm sizes and environments?
- Can these be applied to similar collective behaviours, like labour division?

Thank you! Questions?