12/02/2018 11:18am
Indeed! [LINK]
08/02/2018 4:07pm
The advert video for @iros_2018 is really good! I wish robots really served coffee at the conference [LINK]
07/02/2018 10:10am
RT @NatureEcoEvo: Cockroach and termite genomes reveal molecular basis of termite eusociality [LINK] [LINK]
06/02/2018 1:29pm
Robotics for Nuclear Environments - a really cool website for a really cool project that I am currently a part of a… [LINK]
02/02/2018 8:09pm
RT @RIFBristol: Everything you need to know about Bristol’s sci-tech scene [LINK] via @siliconrepublic [LINK]

[Task Allocation in Foraging Robot Swarms]

Project: Designing Robot Swarms
Date: Apr 2016
Tags: swarm :: robotics :: C++ :: A-Life

Robots foraging Autonomous task allocation is a desirable feature of robot swarms that collect and deliver items. When there are many robots in the swarm, or when collected items accumulate quickly in a drop-off location, congestion can prevent the swarm from working effectively. In such scenarios, self-regulation of workforce can prevent unnecessary energy consumption.

In this paper, we analyse bee-inspired self-regulation algorithms for robot swarms that deliver items into a single drop-off location.

We explore two types of self-regulation:
  • Non-social, where robots go to rest when they experience congestion
  • Social, where robots broadcast information about congestion to their team mates to tell them that they should rest


Performance of the swarms in various environments We show that both types of self-regulation can lead to improved energy efficiency and increase the amount of resource collected. More importantly, the rate at which information about congestion spreads through a swarm affects the scalability of the explored robot control strategies.

A slow information flow, characteristic for non-social self-regulation, leads to behaviour suitable for a larger number of experimental scenarios. On the other hand, fast information flow, achieved by social self-regulation, causes more extreme difference in performance across scenarios. Using swarms with faster information flow thus requires us to be more certain about the environmental conditions we employ our swarms in.

Pitonakova, L., Crowder R. & Bullock, S. (2016). Task allocation in foraging robot swarms: The Role of Information Sharing. In Gershenson, C. et al. (eds.), Proceedings of the Fifteenth International Conference on the Synthesis and Simulation of Living Systems (ALIFE XV), MIT Press, 306-313.

Talk slides

{Please enable JavaScript in order to post comments}

[You might also be intested in...]

How Coding in Python Might Be Bad For You
7 reasons why coding in Python is like writing a really bad essay and getting away with it
Are Robot Swarms Like Brains?
I have recently explored a way of measuring how information flows within a robot swarm. I think that there is something intriguing behind this idea - a swarm's resemblance to the human brain.
Information Flow Principles for Plasticity in Robot Swarms
An important characteristic of a robot swarm that must operate in the real world is the ability to cope with changeable environments by exhibiting behavioural plasticity at the collective level. In this paper, we report on simulation experiments with homogeneous foraging robot teams and show that analysing swarm behaviour in terms of information flow can help us to identify whether a particular behavioural strategy is likely to exhibit useful swarm plasticity in response to dynamic environments.
Top 5 Things I Wish I Knew When I Started a PhD
In a short moment self-reflection, I made a list of the five most important things that doing research with a lot of data has taught me. And I learned the hard way - wasting a lot of time and energy re-doing things instead of being smart about it at the beginning. Note to self: I should read this once a year or so.
V-REP, Gazebo or ARGoS? A robot simulators comparison
Let’s have a look at three commonly used open-source simulators for robotics: V-REP, Gazebo and ARGoS, to find out which one suits your project the best.
Designing Effective Roadmaps for Robotics Innovation
Automated factories, autonomous delivery drones, self-driving cars: these and similar technologies will soon touch every aspect of our lives. An engaging discussion about how these technologies are regulated and innovated took place at the IROS 2017 conference.