
Behaviour-Data Relations Modelling Language For Multi-Robot Control
Algorithms*

Lenka Pitonakova1,3, Richard Crowder1 and Seth Bullock2

Note: This paper was published in Proc. of the 2017 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS 2017), 727–732.
Visit the project web site on http://robot-swarms-design.lenkaspace.net/

Abstract— Designing and representing control algorithms is
challenging in swarm robotics, where the collective swarm
performance depends on interactions between robots and with
their environment. The currently available modeling languages,
such as UML, cannot fully express these interactions. We
therefore propose a new, Behaviour-Data Relations Modeling
Language (BDRML), where robot behaviours and data that
robots utilise, as well as relationships between them, are
explicitly represented. This allows BDRML to express control
algorithms where robots cooperate and share information with
each other while interacting with the environment.

I. INTRODUCTION

Having a suitable modeling language is essential for
designing, representing and reproducing software, includ-
ing that which is written for robots. Various methods are
currently used to describe behaviour in collective robotics.
While some authors prefer to use text alone [1], [2], [3], [4],
others also rely on visual representations, such as statecharts
[5], [6], [7], class diagrams [8], [9], or sequence charts [9],
[10], that follow grammar of formalised modeling languages.

As we will demonstrate below, a major drawback of
these visualisation methods is that they do not represent
information explicitly. Particularly in collective robotics, a
“bottom-up” approach to behaviour design is required [11],
meaning that control algorithms of individual robots need to
be programmed, but that the collective performance emerges
as a result of complex robot-robot and robot-environment
interactions, during which robots acquire, share and process
information [10], [12], [13]. Consequently, algorithm rep-
resentations that do not fully take data representations into
account are often ambiguous and non-comprehensive.

In this paper, the Behaviour-Data Relations Modeling Lan-
guage (BDRML) is defined. The language facilitates unam-
biguous visual and textual representation of robot behaviours,
as well as of their interactions with various types of data
structures. Unlike in other modeling languages, conditional
relationships between robot behaviour and data structures
are expressed explicitly in BDRML, allowing the language
to represent control algorithms where robots cooperate and
share information with each other and where they acquire
and store information in their environment.

*This work was supported by an EPSRC Doctoral Training Centre grant
(EP/G03690X/1) and by Thales UK

1Dep. of Electronics and Computer Science, Univ. of Southampton, UK
2Dep. of Computer Science, Univ. of Bristol, UK
3contact@lenkaspace.net

II. BACKGROUND

The use of natural language [1], [2] or pseudocode [3],
[4] to describe robot behaviour, as well as the way in which
robots exchange information, is popular. However, while
textual descriptions are often comprehensive, the reader is
required to process a lot of text in order to understand
the algorithm described. Furthermore, important parts of the
robot program and key data structures are difficult to identify.

On the other hand, visual representations can provide a
quick overview that is often more accessible than text. A
popular visualisation method is a statechart, where robots are
represented as finite-state machines with “states” indicated in
boxes and “state transitions” shown as arrows between the
boxes [5], [6], [7] (Figure 1a). State transitions can either be
based on boolean conditions or probabilities, that are usually
defined in equations outside of the diagram.

A visual representation of behaviour is useful not only
for an algorithm description, but also during its creation.
Therefore, design patterns, that provide “templates” for al-
gorithm design [14], are often accompanied by diagrams. The
most popular visualisation method for design patterns, both
in object-oriented software and in multi-agent engineering,
is a class diagram [8], [9] (Figure 1b). Both statecharts and
class diagrams are part of the Unified Modeling Language
(UML) [15].

The utility of statecharts and class diagrams for modelling
multi-agent systems, such as robot swarms, is limited for
two main reasons. Firstly, data in these diagrams is not
represented explicitly, making it difficult to express where
information is stored or how it is operated on. It has
already been demonstrated that information processing is
an important part of swarm behaviour [10], [12], [13] and
an adequate representation of data is thus essential when
describing swarm algorithms. Secondly, swarm control al-
gorithms often rely on cooperation or communication be-
tween robots. Therefore, a way of representing relationships
between behaviours and data of two different robots is
needed. Because of these drawbacks, statecharts and class
diagrams often have to be complemented either by textual
description of how robot state transitions depend on data
acquired from other robots [6], [7], [16] or by a different
type of a diagram that specifically represents communication,
such as a sequence chart [9], [10] (Figure 1c).

Some authors address this problem by extending UML
or by creating custom diagrams that do not belong to a
specific modeling language. Such representations are often
intuitive enough to understand, but since their rules are



Fig. 1. Visual representation of a collective task allocation robot control algorithm in the form of (a) statechart, (b) class diagram, (c) sequence chart.
The robot searches the environment as a “Scout” and becomes a “Worker” upon finding a worksite. A Worker extracts resources from the worksite, while
broadcasting recruitment signals to Scouts that are nearby. Any Scout that is recruited becomes a Worker as well. A Worker resumes scouting when its
worksite is depleted.

not clearly defined, they can be ambiguous and difficult
to apply to different control algorithms [17]. For example,
in statecharts for ant-inspired swarms, textual descriptions
inside of state boxes and above state transition arrows have
been used to indicate when pheromone is used by robots [4],
[6]. Class diagrams have been extended in a similar fashion
in order to show entities such as “agent” and “gradient field”,
with arrows between them representing data transfer [8].
Similarly, in other customised diagrams, different robot types
and data storage devices have been visualised as boxes, with
arrows indicating data exchange between them [18], [19].
It is important to point out that all these custom diagrams,
with the exception of those in [4], represent communication
behaviour, such as “notify” or “read”, but do not explicitly
visualise relationships between specific data structures and
robot behaviours. Therefore, they still need to be accompa-
nied by a considerable amount of text that clarifies what data
is communicated and how it affects robot behaviour.

III. BDRML PRIMITIVES
The Behaviour-Data Relations Modelling Language

(BDRML) proposed here addresses the shortcomings of the
existing modelling languages in the following way. It defines
a set of primitives, that represent robot behaviours and data,
and a set of conditional relations between these primitives.
All these elements have their visual as well as textual
representations, which can be used together or separately, and
can fully describe most collective algorithms with minimal
need for an additional explanation in natural language.

There are three types of primitives in BDRML (Figure 2):
• Behaviour, i.e., a set of processes that deal with a par-

ticular situation that a robot finds itself in, for example
“Scout” or “Rest”

• Internal data structure, i.e., information that is stored
in a robot’s memory

• External data structure, i.e., information that is stored
in a non-robot entity, for example, in an RFID tag or
in a gradient field in the environment

Data structure type always follows the structure’s name
and a colon in a textual description. Data type names
appropriate for the context in which the BDRML diagram
is used, e.g., boolean, int, float, object, etc. may be used.

Note that “behaviours” in BDRML, such as “Work” or
“Scout”, can refer to “states” or sets of “states” in finite-state
machines. In neural network controllers, “behaviours” need
not be programmed explicitly, but would manifest through
the network dynamics.

Also note a crucial difference between internal and ex-
ternal data. Internal data is readily available to a robot
at any given point in time, while external data has to be
obtained from the environment. Moreover, when information
needs to be exchanged between robots, data stored internally
can only be passed from one robot to another when they
are within each other’s communication range. On the other
hand, external data can be deposited by one robot into the
environment and read by another robot later.

Since both behaviours and data are primitives, BDRML al-

Fig. 2. Visual (left) and textual (right) representation of the BDRML
primitives.



Fig. 3. Visual (left) and textual (right) representation of the BDRML
relations.

lows precise specification of relations between robot actions
and information. There are seven types of relations possible
(Figure 3):

• Transition: a behaviour-behaviour relation, where the
robot transitions from one behavioural mode to another

• Read: a behaviour-data relation, where internal data,
stored in the robot’s memory, is used by the robot when
it is engaged in a particular behaviour

• Write: a behaviour-data relation, where an internal data
structure is written into when a robot is engaged in
a particular behaviour. Optionally, the new value or
a function that defines it can be indicated next to a
dashed line extending from the end of the relation

Fig. 4. Visual (left) and textual (right) representation of the BDRML
conditions.

arrow in the visual description, and written before a
colon proceeding the data structure name in a textual
description.

• Receive: a behaviour-data relation, where external data,
stored in the environment, is used by the robot when it
is engaged in a particular behaviour

• Send: a behaviour-data relation, where external data



is stored in the environment by the robot when it is
engaged in a particular behaviour. Alternatively, the
robot sends data to another robot that stores the data
as internal. As is the case with the write relation, the
new value or a function that defines it may optionally
be specified.

• Copy: a data-data relation, where information is copied
from one data primitive to another, for example, from
an external to an internal data structure that represents
the same information

• Update: a relation of a data structure with itself, where
its value is updated from that in the previous time
step by a subroutine not visualised in the BDRML
diagram (for example, a robot’s hunger level might
“spontaneously” increase by one at every time step).
The new value or a function that defines it must be
specified.

Note that it is assumed that a relation is applied once per
time step. For example, a “+1” write relation means that
value of a particular variable is increased by one in each
time step of the program that a BDRML diagram represents.

It is also necessary to define a set of conditions under
which a particular relation may occur. A condition is visually
represented as an annotated triangle at the beginning of a
relation arrow. In a textual representation, a condition set
follows a relation signature and is separated from it by a
colon (Figure 4). A condition may be annotated as a name
of a boolean function or a probability, as an existence or a
non-existence of a data structure, as robot being engaged
in a certain behaviour (relevant, e.g., in the case of the
“copy” relation), or as a simple and unambiguous textual
description. A special type of condition is an “always”
condition, represented by an asterisk (*). Visually, a relation
with an “always” condition may be represented without the
condition triangle symbol. Multiple conditions can affect a
single relation. Unless otherwise specified, the “or” logical
operator is assumed when conditions are combined.

Note that there are three types of lines used in BDRML.
Single solid lines represent transitions between behaviours
and read/write relations between behaviours and internal data
structures. Double solid lines represent some form of com-
munication and link external data structures with behaviours
(e.g., in the case of the “receive” relation) and with internal
data structures (e.g., in the case of the “copy” relation).
Double solid lines can also link a behaviour with an internal
data structure during the “send” relation, signifying that a
robot engaged in a particular behaviour sends information
to another robot, that stores it in its own memory. Finally,
dashed lines are used for annotating relation details and
conditions.

IV. EXAMPLES

A full BDRML representation consists of both visual and
textual specification. A set of behaviours, B, internal data
structures, Di and external data structures, De, are first
defined, followed by a list of relations between them. Each
box, circle and arrow in the visual representation must have

a corresponding element or line in the textual representation
and vice versa. An example is shown in Figure 5. The
described algorithm allows robots to search for worksites and
recruit each other to perform work and it can be applied for
decentralised task allocation [1]. UML and sequence chart
representations were shown in Figure 1. A robot performs
the “Scout” behaviour by searching the environment for
worksites that can be found with a probability p(F ). A
successful Scout, that finds a worksite, performs the “Work”
behaviour, during which it reads from and writes into its
internal data structure, “Worksite location”, to keep track of
where the worksite is located. Additionally, a working robot
sends Worksite location to any Scout that it encounters in
order to recruit it. Note how the condition that allows a
robot to transition from the Scout to the Work behaviour
can be triggered by both p(F ) or by recruitment, i.e.,
by existence of the internal data structure in the Scout’s
memory. Also note that the condition of recruitment, “scout
encountered” signifies that the two robots have to be at a
similar place at a similar time for recruitment to occur. The
BDRML diagram fully and unambiguously describes when
recruitment is performed, what information is exchanged
between robots and how it affects robot behaviour.

A more complex example of a bee-inspired robot control
algorithm for collective foraging, where robots drop off
resource and recruit each other in the base [13], is shown
as a statechart in Figure 6a and as a BDRML diagram in
Figure 6b. As in the previous example, a “Scout” can find
worksites in the environment with a probability p(F ), after
which it starts working by loading resources from a worksite,
dropping them in the base and returning to the worksite until
it is depleted. After resource has been dropped off in the
base, the robot recruits Observers that are present in the base
for a certain amount of recruitment time, TR. Any Scout
that cannot find worksites within a certain scouting time,
TS , returns to the base and becomes an Observer. When an
Observer is recruited, it becomes a Worker. Alternatively, an
Observer transitions back to being a Scout with a scouting
probability, p(S).

Note again how all relevant data structures are represented

Fig. 5. BDRML representation of the robot control algorithm depicted in
Figure 1



Fig. 6. Representation of a bee-inspired foraging robot control algorithm
as a (a) statechart, (b) BDRML diagram

in BDRML but cannot be directly expressed in a statechart.
For example, it is not clear from the statechart that robots
in the “Recruiter” state send information to robots in the
“Observer” state. This is only shown implicitly, through the
“recruited” annotation above the arrow from “Observer” to
“Worker” in Figure 6a. In BDRML, an explicit relationship
between “Recruit in the base” and “Worksite location” ex-
ists, as well as an explicit condition of transitioning from
“Observe in the base” to “Work” behaviour, that involves
existence of “Worksite location” in the Observer’s memory.

A final example, depicted in Figure 7, shows a BDRML
representation of an ant-inspired collective foraging algo-
rithm, where robots utilise “beacons” in the environment
in order to build a gradient of virtual pheromone from the
base to a worksite and back [20], [21]. While performing the
“Travel to Worksite” behaviour, a robot updates the “Base

Fig. 7. BDRML representation of an ant-inspired foraging robot control
algorithm

pheromone” that is stored in a beacon nearby, so that its value
increases by one each time a new beacon is visited. In order
to do this, a robot needs to keep track of the “Last pheromone
value” in an internal data structure. Because the robot travels
towards the Worksite, a gradient of Base pheromone emerges
that can be followed on the way back to the base. Gradient
of the “Food pheromone” is built in a similar fashion while
the robot travels back to the base. Any robot performing the
“Scout” behaviour that encounters a beacon can follow the
Food pheromone gradient in order to reach a worksite and
start working. Values of both pheromones decrease over time
in each beacon according to some evaporation function, eN .

A statechart of the same algorithm would not be able to
clearly represent when pheromone values are read and up-
dated, or that values of pheromones, which are stored outside
of the robots, decrease over time. Similar problems would be
encountered when using a sequence chart. Since arrows in
a sequence chart can only represent active communication,
i.e., data transfer from robot 1 to robot 2, it would not be
possible to show how robots read data from the environment,
i.e., how information is acquired by a robot from a passive
beacon.



V. SUMMARY AND DISCUSSION
BDRML is a new modeling language created specifically

for collective robotics, that can be used to design, represent
and develop robot programs and relevant data structures.
A BDRML description consists of a visual and a textual
representation, that can be used together or separately, and
includes primitives, i.e., robot behaviours and internal and
external data structures, as well as conditional relations
between them. A BDRML representation differs from other
representations, such as statecharts, class diagrams and se-
quence charts in three important ways:

• It describes robot behaviours, not states. For example,
while a statechart may represent a “Worker” state,
BDRML represents “Work” behaviour (Figure 5). This
allows BDRML to model not only finite-state ma-
chines, but also, for example, neural network con-
trollers, behaviour-based controllers, etc.

• It explicitly represents data (e.g., “Worksite location”
in Figure 5), rather than communication routines (e.g.,
“broadcast recruitment signal” in Figure 1c). BDRML
thus combines capabilities of statecharts and class di-
agrams, which describe a robot control algorithm, and
sequence charts, which depict communication between
robots, by clearly expressing what data is being trans-
ferred and when.

• It can include relations between robot states and data
external to a robot’s memory. This allows BDRML to
provide a more complete overview of the robot swarm
and its environment and of interactions between the two.

The last two points are especially important for swarm
robotics, where interactions and communication between
robots and with their environment need to be considered (see
Sections I and II).

In this paper, we have applied BDRML to represent
robot control algorithms for collective foraging and task
allocation with homogeneous robot swarms. In the future, the
language will need to be extended so that additional aspects
of robots and their environment, relevant in other swarm
applications, can be modelled. For example, in order to
represent algorithms for collective construction and sorting,
entities that can be manipulated by robots, such as “bricks”,
will need their unique representations. In representations of
heterogeneous robot swarms, behaviours and data structures
of different robot types, other programmable entities and
humans will need to be clearly distinguished.

Another research avenue, that we are currently pursuing,
is applying BDRML to express design patterns for robot
swarms. Design patterns represent templates for behaviours
that can be combined together in order to create a full robot
control algorithm. It is therefore crucial to include formal
grammar rules in BDRML according to which multiple de-
sign patterns, expressed in BDRML, can be unambiguously
combined.

REFERENCES

[1] M. O. F. Sarker and T. S. Dahl, “Bio-Inspired communication for
self-regulated multi-robot systems,” in Multi-Robot Systems, Trends
and Development, T. Yasuda, Ed. InTech, 2011, pp. 367–392.

[2] F. Ducatelle, G. A. Di Caro, C. Pinciroli, and L. M. Gambardella,
“Self-organized cooperation between robotic swarms,” Swarm Intelli-
gence, vol. 5, no. 2, pp. 73–96, 2011.

[3] N. Lemmens, S. de Jong, K. Tuyls, and A. Nowe, “Bee behaviour in
multi-agent systems,” in Adaptive Agents and Multi-Agent Systems III.
Adaptation and Multi-Agent Learning, K. Tuyls, A. Nowe, Z. Gues-
soum, et al., Eds. Berlin: Springer, 2008, vol. 4865, pp. 145–156.

[4] N. Hoff, R. Wood, and R. Nagpal, “Distributed colony-level algorithm
switching for robot swarm foraging,” in Distributed Autonomous
Robotic Systems, A. Martinoli, F. Mondada, N. Correll, et al., Eds.
Berlin: Springer, 2013, vol. 83, pp. 417–430.

[5] J. Wawerla and R. T. Vaughan, “A fast and frugal method for team-task
allocation in a multi-robot transportation system,” in Proceedings of
the 2010 IEEE International Conference on Robotics and Automation
(ICRA 2010). Piscataway, NJ: IEEE Press, 2010, pp. 1432–1437.

[6] R. Fujisawa, S. Dobata, K. Sugawara, and F. Matsuno, “Designing
pheromone communication in swarm robotics: Group foraging behav-
ior mediated by chemical substance,” Swarm Intelligence, vol. 8, no. 3,
pp. 227–246, 2014.

[7] E. Castello, T. Yamamoto, F. D. Libera, W. Liu, F. F. T. Winfield,
et al., “Adaptive foraging for simulated and real robotic swarms: the
dynamical response threshold approach,” Swarm Intelligence, vol. 10,
no. 1, pp. 1–31, 2016.

[8] T. De Wolf and T. Holvoet, “Design patterns for decentralised coor-
dination in self-organising emergent systems,” in Proceedings of the
4th International Workshop on Engineering Self-Organising Systems
(ESOA’06), S. A. Brueckner, S. Hassas, M. Jelasity, and D. Yamins,
Eds. Berlin: Springer, 2007, vol. 4335, pp. 28–49.

[9] T. T. Do, M. Kolp, and A. Pirotte, “Social patterns for designing multi-
agent systems,” in Proceedings of the 15th International Conference
on Software Engineering & Knowledge Engineering (SEKE 2003),
G. Webb and H. Dai, Eds. Skokie, Ill.: Knowledge Systems Instittute,
2003, pp. 103–110.

[10] J. L. Fernandez-Marquez, G. Di Marzo Serugendo, S. Montagna,
M. Viroli, and J. L. Arcos, “Description and composition of bio-
inspired design patterns: A complete overview,” Natural Computing,
vol. 12, no. 1, pp. 43–67, 2013.

[11] H. V. D. Parunak and S. A. Brueckner, “Software engineering for
self-organizing systems,” The Knowledge Engineering Review, vol. 30,
no. 4, pp. 419–434, 2015.

[12] J. M. Miller, X. R. Wang, J. T. Lizier, M. Prokopenko, and L. F.
Rossi, “Measuring information dynamics in swarms,” in Guided Self-
Organisation: Inception, M. Prokopenko, Ed. Berlin: Springer, 2014,
vol. 9, pp. 343–364.

[13] L. Pitonakova, R. Crowder, and S. Bullock, “Information flow prin-
ciples for plasticity in foraging robot swarms,” Swarm Intelligence,
vol. 10, no. 1, pp. 33–63, 2016.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Indianapolis, IN:
Pearson Education, 1994.

[15] Object Management Group, Unified Modeling Language specification.
http://www.omg.org/spec/UML/ [Accessed 23 Jun 2016], 2015.

[16] W. Liu and A. F. T. Winfield, “Modelling and optimisation of adaptive
foraging in swarm robotic systems,” The International Journal of
Robotics Research, vol. 29, no. 14, pp. 1743–1760, 2010.

[17] D. Harel and B. Rumpe, “Meaningful modeling: what is the semantics
of semantics?” Computer, vol. 37, no. 10, pp. 64–72, 2004.

[18] J. H. Lee, C. W. Ahn, and J. An, “A honey bee swarm-inspired coop-
eration algorithm for foraging swarm robots: An empirical analysis,”
in Proceedings of the 2013 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics (AIM 2013). Piscataway, NJ: IEEE
Press, 2013, pp. 489–493.

[19] D. Zhang, G. Xie, J. Yu, and L. Wang, “Adaptive task assignment for
multiple mobile robots via swarm intelligence approach,” Robotics and
Autonomous Systems, vol. 55, no. 7, pp. 572–588, 2007.

[20] B. Hrolenok, S. Luke, K. Sullivan, and C. Vo, “Collaborative foraging
using beacons,” in Proceedings of the 9th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2010),
W. van der Hoek, G. A. Kaminka, Y. Lesperance, et al., Eds.
Richland, SC: IFAAMAS, 2010, pp. 1197–1204.

[21] N. Hoff, A. Sagoff, R. J. Wood, and R. Nagpal, “Two foraging
algorithms for robot swarms using only local communication,” in
Proceedings of the 2010 IEEE International Conference on Robotics
and Biomimetics (ROBIO 2010). Piscataway, NJ: IEEE Press, 2010,
pp. 123–130.


