
 

Incorporating Inner States
for Agent Systems in Strategy Games

Undergraduate Thesis

Lenka Pitonakova
Supervised by Gordon Clapworthy
Computer Games Development
University of Bedfordshire
May 2009
 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 2  
 

Abstract 
The  theoretical  part  of  the  project  focuses  on  currently  used  techniques  for  obstacle 
avoidance,  task-oriented  behaviour  and  fuzzy  logic  in  the  field  of  games  AI.  A  number  of 
approaches are discussed and evaluated. 
The  artefact  of  the  project  is  a  strategy  game  in  which  units  have  an  inner  state  which 
reflects  on  their  actions.  This  addresses  a  problem  in  most  of  today’s  strategies  -  units 
behave in the same way and display no reactions to how user plays a game. Agents in the 
game use fuzzy  logic  to evaluate their current state and adjust  their behaviour accordingly. 
The individualised behaviour was evaluated as an interesting feature by a number of players 
who tested the game. 
Other aspects of games intelligence have also been experimented with -  including obstacle 
avoidance in a continuous environment, finite-state machines, task representation and task-
oriented behaviour.  
 
Acknowledgements 
 
I would  like  to  thank my  supervisor Gordon Clapworthy who  supported me  throughout  the 
whole project and helped me keep on track. 
I am also grateful  to my friends who kindly spent some time testing  the project artefact: N. 
Antolova, F. Grüenke, M. Mačo, P. Pitoňák and R. Vaňuš. 
 
 
Keywords 
 
Strategy  game,  life  simulation,  games  artificial  intelligence,  obstacle  avoidance,  emotions, 
inner state, agents, fuzzy logic 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 3  
 

Table of Contents
 
 
Table of Contents.. 3

1. Introduction ... 6
1.1. Background ... 7

1.2. Introduction to the Project Artefact .. 7

1.3. Aims and Objectives.. 8
1.4. Methodology .. 8

1.5. Structure of the Report .. 9

2. The Contextual Review ... 10

2.1. State of the Art... 11
2.2. Path Finding and Obstacle Avoidance .. 11

2.3. Task-oriented Behaviour and Adaptive AI ... 13

2.4. Fuzzy Logic ... 16
2.5. Conclusion... 18

3. Creating an Entity in a 2D World... 19

3.1. The System Structure, World Coordinates and Mapping 20
3.2. Model of an Agent ... 20

3.3. Game Interface.. 22

3.4. Movement and its Graphical Representation .. 23
3.5. Navigation Towards a Target .. 24

3.6. Obstacle Avoidance... 25

3.7. Testing and Evaluation .. 25

3.8. Minor Additions and Improvements ... 29
3.9. Conclusion... 30

4. Creating Strategy Game Features .. 31

4.1. World Objects and Buildings ... 32
4.2. Gathering Resources... 32

4.3. Breeding .. 34

4.4. Using XML to Save and Load a Game .. 34
4.5. Dying ... 36

4.6. Testing and Evaluation .. 36

4.7. Minor Additions and Improvements ... 38
4.8. Conclusion... 39

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 4  
 

5. Implementing the Inner State .. 40

5.1. Types of Inner State Variables .. 41
5.2. Evaluating the Current Inner State .. 41

5.3. Impact of the Inner State ... 43

5.4. Representation of the Inner States.. 45
5.5. Testing and Evaluation .. 46

5.6. Conclusion... 47

6. Completing a Strategy Game.. 48

6.1. Random Map Creation .. 49
6.2. Rewards to the Player ... 50

6.3. The Win and Lose States .. 50

6.4. Testing and Evaluation .. 52
6.5. Minor additions and Improvements ... 53

6.6. Conclusion... 55

7. Conclusion and Future Work... 56
References.. 59

Appendices ... 62

Appendix A: Games that brought innovations into AI ... 63
Appendix B: A tile-based vs. continuous environment ... 64

Appendix C: Entity in a continuous environment and its movement........................... 65

Appendix D: Pure pursuit method for obstacle avoidance.. 66

Appendix E: Various methods used for obstacle avoidance 67
Appendix F: VSRC Task Discourse Architecture ... 70

Appendix G: UML diagram of the artefact .. 71

Appendix H: World axes in Alien Farm and the mini map .. 74
Appendix I: Adjusting the texture based on unit’s rotation, implementation 1 75

Appendix J: Steering towards a target when it is right at the back of an agent 77

Appendix K: Testing against collision with other agents in the Idle state 77
Appendix L: Extension to the obstacle avoidance algorithm 79

Appendix M: Graphical representation of the gathering algorithm 80

Appendix N: Improved texture for an agent – additional colours and graves 81
Appendix O: An example of XML structure for a saved game.................................... 83

Appendix P: Calculation and the use of the inner state.. 85

Appendix Q: Fuzzification algorithms ... 86

Appendix R: Fuzzification membership functions... 90

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 5  
 

Appendix S: Defuzzification of happiness and activity ... 92

Appendix T: Creating speech ... 94
Appendix U: Random maps screenshots ... 96

Appendix V: Evaluation questionnaire answers ... 97

Appendix W: The Project Poster .. 112
 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 6  
 

 

1. Introduction
 

 

 

 

 

 

 

 

 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 7  
 

1.1. Background
 
This project  focuses on strategy games development and games artificial  intelligence.  The 
term ‘artificial intelligence’ in games refers to ‘techniques used in computer and video games 
to  produce  the  illusion  of  intelligence  in  the  behaviour  of  non-player  characters’  (NPCs) 
[Wikipedia Games AI]. Based on  this definition, we can assume that all games which have 
NPC  characters  implement  artificial  intelligence.  This  is  especially  true  for  strategy  games 
where  both  player’s  and  opponent’s  (computer’s)  units  can  be  understood  as  agents 
programmed  to  do  various  tasks  like  getting  from  one  place  to  another  while  avoiding 
obstacles,  gathering  resources  or  engaging  enemies  in  combat. However, most  of  today’s 
games use units which don’t change their behaviour, nor they directly react to what happens 
to them or  in different cases the units do only that. On one hand there are brilliant strategy 
games like Command & Conquer or Age of Mythology which most of all implement intelligent 
enemies, while on  the other hand we have  life-simulations  like  the Sims where characters 
develop as the game progresses. However, there is nothing in between and this is where the 
gap in the market is. 
 
To  address  this  problem,  this  project  focuses  on means  of  implementing  ‘inner  state’  into 
units controlled by the player. The reason behind this is that even though strategy games are 
nowadays very advanced, player doesn’t directly connect with the units he controls thanks to 
the fact that all of them are the same and do not mean anything as individuals. Units are all 
good  for  exploring  and  fighting,  collecting  resources  or  building  structures  but  the  player 
doesn’t need to pick up the ones who would be best for these types of  tasks. The units do 
not complain  -  they simply do what  they are  told and are happy  to do  it  for hours of game 
play. 

1.2. Introduction to the Project Artefact
 
The project artefact is a simple 2D asymmetric strategy game called Alien Farm where player 
takes  care  of  a  colony  of  alien  beings.  The  aliens  can  gather  resources  and  breed.  Their 
inner state consists of happiness and activity - two variables which are adjusted for each unit 
based on what it did previously and whether it liked it or not. Aliens are finite-state machines 
which have a memory where  their actions can be  recorded. The units care about  the well-
being  of  their  colony  as  well  -  this  is  characterised  by  the  amount  of  food  in  store  and 
available space in houses. 
 
Units are able to adjust their behaviour based on their happiness. If they are frustrated they 
will gather and breed slowly, but doing  their preferred  job makes  them very efficient. Also, 
they get tired when they travel or get old which results in slower movement. Fuzzy logic was 
used both for evaluation of the current inner state as well as to adjust the behaviour. 
 
The  game  has  been  tested  by  a  number  of  players  and  their  reactions  on  this  type  of 
behaviour are discussed and taken into account in the latest implementation version. 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 8  
 

1.3. Aims and Objectives
 
Aims 
1. To  create  an  effective  path  finding  and  obstacle  avoidance  algorithm  for  an  agent 
system by merging and altering current widely-used approaches 

2. To  create  a  game  where  agents  are  able  to  complete  various  tasks  and  their 
behaviour  is  based  on  their  current  state  affected  by  the  environment  and  agent’s 
recent performance  

 
Objectives 

• To identify and evaluate existing approaches to path finding and obstacle avoidance 
• To identify and evaluate existing approaches to task-oriented behaviour 
• To develop a game which implements most effective approaches to the above  
• To design and develop processes  for agents  in  the game so  that  their behaviour  is 
individual and changes by their past experience 

• To make the consequences of player’s actions easily understandable when it comes 
to the effect on behaviour of the agents 

• To create an easily understandable interface for the game 

1.4. Methodology
 
In  the  beginning  of  the  project,  a Gantt  chart  was  created with  a  schedule  for  all  desired 
functionality. The project was meant to follow the Waterfall method with fixed deadlines for a 
number  of  stages.  However,  this  became  unfeasible  soon,  especially  after  the  project 
character  has  changed  from  creating  a  simulation  of  an  agent  system  able  to  learn  to 
developing a game where agents have the inner state. 
 
In January new objectives have been set up which required a new Gantt chart. Much more 
estimated time was added to each of the stages so that there was enough time to implement 
new  ideas  during  the  development.  The  Iterative methodology was  used where  the  newly 
implemented features were tested immediately after small time periods. This helped to cope 
with the time management in a better way - if there was something which needed fixing, the 
memories about how  it was developed were  fresh and  it was quick and easy  to adjust  the 
functionality.  Also,  some  ideas  from  the  agile  programming  methodology  were  taken  into 
account, especially adding features during development if there was extra time in the end of 
a stage.  
 
The final project plan was split into the following stages: 

Stage  Due date  Tasks involved 

1. Movement  2nd February 
2009 

agent selection, tasks queue, target 
following, obstacle avoidance 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 9  
 

2. Creating buildings  6th February 2009  creating the graphics, placing buildings 
on the terrain using the Construction 
tab 

3. Gathering  20th February 
2009 

setting up the resources (food, grain) 
and gathering them, breeding, initial 
speech representation 

4. Implementing inner 
states 

18th March 2009  implementation of fuzzy logic, setting 
up the rules, state evaluation, state 
graphical representation, balancing the 
game (resources vs. costs, impact of 
happiness and activity on the colony’s 
ability to survive) 

5. Creating a game  8th April 2009  random map generation, 
saving/loading, win/loose state, 
rewards to the player, tutorial 

6. Game evaluation 
and adjustments 

20th April  distributing the game to up to 10 
people, creating a questionnaire, 
collecting the views, final adjustments 

1.5. Structure of the Report
 
Chapter 2 provides the information about various AI techniques based on the research done 
in the beginning of the project. The chapter focuses on path finding and obstacle avoidance, 
task-oriented behaviour, task processing and task representation. It also provides an insight 
into fuzzy logic - a technique used for classification of data as well as producing output based 
on reasoning similar to human. 
 
Further sections discuss building of the artefact. From basic game features like creating the 
world and making units  (chapter 3),  through creating  terrain objects and buildings  (chapter 
4),  implementing  fuzzy  logic and  inner  state  (chapter 5),  to adding strategy game  features 
like rewards to the player and win and lose states (chapter 6). Chapter 6 also reports on user 
evaluation  and  lists  improvements  which  have  been  done  before  releasing  the  game. 
Chapters 3-6 first talk about how the individual features have been implemented. Testing and 
evaluation  is a part of each chapter and  refers  to  the  implemented  features. Each chapter 
ends with  a  section which  lists minor  adjustments which  needed  to  be  done  and  features 
which were added after considering the testing results. 
Chapter  7  concludes  the  findings  of  this  project  and  provides  suggestions  for  future  work 
which could be based on the artefact. The chapter  is  followed by the  list of references and 
appendices. Appendix W shows the project poster. 
 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 10  
 

2. The Contextual Review
 

 

There are many types of games on the market which are in continuous development 
as players requirements for a good-quality game get higher and higher. This chapter 
will  discuss  the  State  of  the  Art  in  the  games  industry  and  present  what  people 
expect  from  different  games  and  what  features  are  most  likely  to  attract  the 
audience. 
 
The section will also provide  the reader with an  insight  into  the current  techniques 
used  for  obstacle  avoidance  in  both  tile-based  and  continuous  environments.  A 
significant amount of work has been done on this topic already since the first games 
were  developed.  A  number  of  approaches  will  be  taken  into  account  and  their 
advantages and disadvantages will be provided. 
 
Further sections will discuss how a  task-oriented behaviour  in artificial entities can 
be created. Task representation and task processing will be described. Also, fuzzy 
logic will be discussed since  it played a major  role  in creating  the project artefact. 
Fuzzification  can  be  used  to  calculate  entity’s  inner  state  - mood,  happiness  and 
awareness  of  the  world  around.  Fuzzy  rules  and  defuzzification  can  than  help  to 
determine what action to take or calculate an output value. 
 

 

 

 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 11  
 

2.1. State of the Art
 
Currently the world of AI developers is split into two: one part uses ‘deterministic’ AI which is 
used  to simulate  intelligent behaviour. Such AI  is  less computationally expensive and does 
what it is programmed to do – e.g. follow a player or run away from a certain place. Such AI 
is rather easy to program, control and test. On the other hand, ‘nondeterministic’ AI is more 
difficult  to  predict.  Behaviour  emerges  from  a  set  of  low-level  rules,  i.e.  it  is  not  directly 
coded. The examples of such AI include flocking behaviour or programs able to adapt to the 
user.  Here  a  bottom-up  approach  originally  introduced  by  Langton  is  used  –  small  rules 
coded into an artificial entity combine in order to produce its behaviour [S. Levy, 1993]. Such 
AI  is mostly used  for  simulations and  research because  it  needs much more memory and 
CPU power. 
 
It  is  necessary  for  computer  games  to  have  some  kind  of  AI  implemented.  Today’s  AI  is 
much more sophisticated than in the previous century but still lacks a lot to be realistic. The 
newly discussed topic  is  ‘Adaptive AI’,  in other words AI than can learn from its experience 
and change its behaviour [AI Depot and Planet Crap]. 
 
AI is mostly used in the following types of games: 
a) Strategies (Age of Mythology, Black and White) 
b) RPG games (Diablo) 
c) MMO (Massively Multiplayer Online) games (World of Warcraft) 
d) First-person shooters (Half-life, Halo) 

 
Appendix A lists innovative games which widened our understanding of AI. 
 
In general, the game players’ community is interested in the following factors of AI: 
a) Unpredictabil i ty  of  NPCs,  good  interaction  with  player  [GameAI  page  A], 
believable behaviour [Slashdot forum and GameAI page C] 

b) A-life systems which are able to evolve throughout a game and display some kind of 
autonomy, a ‘living world’ [GameAI page A] 

c) Rules and scripts adjustable off l ine [Game Dev and GameAI page B] 
d) Dynamic generation of story [GameAI page A] 

NPCs and A-life systems should behave and evolve in a similar manner than humans in the 
real life. Believability means that a player is able to develop some kind of connection with an 
NPC which makes a game much more enjoyable and interesting. 

2.2. Path Finding and Obstacle Avoidance

 

2.2.1. The Environment 
 
Information  about  the  following  section  was  mostly  taken  from  D.M.  Bourg’s  and  G. 
Seeman’s AI for Game Developers (2004). I will reference different sources in the text where 
needed. 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 12  
 

 
Under  ‘environment’  we  understand  the  virtual  world  where  software  agents  are  placed, 
move, learn and evolve. Each type of a virtual environment has its structure represented by 
different  types  of  terrain.  Terrain  usually  affects  movement  of  the  entities  put  into  the 
environment. A map of the terrain is usually stored as a 2D grid or a 3D model. 
In  terms  of  how  its  description  is  stored  and  how  a  programme  uses  this  data,  an 
environment  can  be  understood  as  tile  based  or  continuous.  Please  refer  to  Appendix  B 
where the two are explained in detail. 
 
There are two ways in which AI can perceive the environment: 

a) offline - via so called ‘waypoints’ - locations on a map which represent free space and

are connected so that a connection represents a clear path

b) online - during movement. This approach is similar to how humans perceive the world

around but more difficult to implement as more CPU-expensive as an AI entity needs

to gather information about the environment around

 

2.2.2. Model of an Agent and its Movement 
 
A tile-based environment consists of equal sections therefore there is no real physical model 
of  an  object  needed. We  simply  put  an  image  of  an  object  on  a  tile  and move  the  image 
where appropriate. 
 
Continuous environment is much more complicated and requires an agent to move according 
to rules used in geometry. Appendix C describes such model and the movement based on it.  
AI entities should tend to find the shortest path to get from point A to point B. To do so, they 
need to know their current location as well as a location of the target point. 
 
The movement should ideally appear [D. M. Bourg and G. Seeman, 2004]: 

a) realistic - simil ar t o movement of biol ogical ent it ies

b) efficient – use as l it t l e CPU as possibl e

c) reliable - movement al gor it hms shoul d be t est ed proper l y and work in al l
scenar ios

d) purposeful – t he al gor it hms shoul d al ways f ul f il t heir t ask

Agents called animats were introduced [D. M. Bourg and G. Seeman, 2004] to achieve this 
type of behaviour. Animats are AI entities able to perceive the environment through sensors 
like infra-red or sound. They are able to get content of a point in front of them (for example a 
type of material object consists of like steel, rock, water, etc). Also, they are able to find free 
space between obstacles by querying  the environment  about  a  type of material  in  front  of 
them. 
 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 13  
 

It is important to adjust sensitivity of the sensors so that an AI entity knows about an obstacle 
in  front  of  it  in  a  reasonable  time before  it  reaches  it. Also,  some kind of  path planning  is 
needed  to  make  the  movement  realistic  (i.e.  AI  entities  should  tend  to  avoid  obstacles 
following a curved path, not using straight lines and turning at one point). 
 
In 2003, O. Ringdahl has  introduced an obstacle avoidance system  for autonomous  forest 
machines. The paper  refers  to  trucks which  can be  sent  to a  forest  and are able  to avoid 
obstacles based on their ability to perceive the environment around them. A truck consists of 
two  parts  joined  in  the  middle.  This  model  can  be  simplified  just  to  one  part  and  the 
introduced algorithms can be used for any AI entity including a robot, a spaceship or an evil 
warrior. 
To solve the problem of a vehicle getting from point A to point B, Ringdahl has introduced a 
Pure Pursuit method. Please refer to Appendix D to read more about Ringdahl’s findings.  
The situation gets more complicated if there are obstacles in the vehicle’s way. To deal with 
obstacle  avoidance,  various  methods  have  been  introduced,  including  waypoints  and  A* 
algorithm  [D. M. Bourg and G. Seeman, 2004],  vector-field histogram  [O. Ringdahl,  2003], 
potential function and tracing algorithm [D. M. Bourg and G. Seeman, 2004]. Please refer to 
Appendix  E  to  find  out  more  about  these  methods  and  compare  their  advantages  and 
disadvantages. 

2.3. Task-oriented Behaviour and Adaptive AI
 

2.3.1. Task Representation 
 
The main purpose of each agent system is to complete given tasks. Agents must therefore 
be aware of their tasks as well as of a way of how to reach a goal. To achieve this, rules for 
completing  tasks  need  to  be  created.  They  can  be  understood  as  objects  with  attributes 
which can change dynamically. 
 
PAR (Parameterized Action Representation) objects [J. R. Lee and A. B. Williams, 2004] are 
able  to  store  information  about  how  to  accomplish  tasks.  The  logic  was  used  for  ‘smart 
avatars’ able to receive orders from a player and respond according to their current state and 
state of their environment. 
A PAR object describes:

a) Target object(s) of an action - object(s) that can be manipulated or marked for use

b) Agent - performer of an action

c) Applicability conditions - can include e.g. agent’s capabilities or object’s

configuration

d) Start/ result - start and result time, state of the environment at this time

e) Sub actions - any smaller actions needed to complete (e.g. ‘get to a location’, ‘turn on

flashlights’, etc.)

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 14  
 

f) Core Semantics - components of meaning of an action (e.g. force, path, post-

conditions, etc)

g) Purpose - conditions to achieve or actions to generate/enable

h) Conditions of termination - states of the agent/environment when the action is

stopped

i) Agent Manner - constraints on manner in which action is performed

The PARs can be extended by additional parameters for personality and mood.

The PARs can have two forms:

a) Uninstantiated (UPARs) - carry generic information (parts C-F). These can be

understood as ‘classes’ in C++.

b) Instantiated (IPARs) - override UPARs with more specific information (performer,

object, manner of performance). These are understood as ‘instances’ of a class which

are created when an instruction is given to an agent.

There are several types of instructions which can be received either from a user or from a

system. The most distinctive ones include:

a) Immediate - e.g. ‘Explore location XYZ’

b) Conditional - e.g. ‘When there is a steep terrain, go around’

c) Negative - e.g. ‘Do not cross a swamp’

Lee and Williams (2004) have also described how to construct architecture to allow PARs to

work. Please refer to Appendix F to see their model.

2.3.2. Task Processing and Specialisation 
 
We can imagine an agent as a finite-state machine. Finite-state machines have a number of 
states  they can be  in and conditions about when a state changes  to another  [D. M. Bourg 
and G. Seeman, 2004]. An intelligent agent must know how to decide which state to be in. If 
all  agents  start  with  an  ‘idle’  state,  there  must  be  a  mechanism  which  makes  them  start 
working on tasks. 
 
V.  A. Cicirello  introduced  so-called  ‘wasp-like  agents’  in  2001.  These  entities  remember  a 
response threshold for all existing tasks and tend to pick up one with low response threshold 
and high task stimulus (linear to the time the task hasn’t been assigned). There is a certain 
probability P for each available job to be picked up by an agent: 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 15  
 

     
Figure 1-1 – calculating probability of picking up a task according to V.A. Cicirello (2001) 

 
Where Sj is a task’s stimulus and Θw,j is a response threshold of the task type. 
Wasp-like agents can roam in  the environment until  they sense that  there  is a  task around 
them needed to complete. Alternatively, all available tasks could be stored in a global array 
or  in a global object to which all agents have access. Idle agents are able choose the next 
most suitable tasks for themselves. 
 
We assume that each task requires a certain tool or characteristics of an agent in order to be 
completed. For example, exploration jobs should be assigned to agents with more powerful 
thrusters  while  gathering  resources  should  be  done  by  agents  who  have  a  carriage  with 
them. If an agent is to switch from one specialisation to another, it has to return to the base 
and swap a current tool for a new one. This  is where the response threshold is used. After 
completing a job A, the response threshold for this type of job is decreased in order to make 
it more attractive for the agent next time. Moreover, response thresholds for all other types of 
tasks are  increased.  If  an agent  is  idle  than all  response  thresholds decrease slightly with 
time. 
 
Updating  the  response  thresholds  this  way  makes  agents  specialise  in  a  type  of  task.  A 
colony  should  end  up  being  split  into  ‘explorers’  and  ‘gatherers’.  However,  if  for  example 
there  are  no  gathering  tasks  available  but  there  are  idle  gatherers  within  the  colony, 
response  thresholds  for  all  jobs  (including exploration)  decrease  incrementally. Also,  if  the 
colony  doesn’t  have  enough  explorers  and  there  are  only  exploration  jobs  available,  their 
stimuli  increase  with  time  and  they  become  more  attractive  for  gatherers.  This  makes 
gatherers start specialising in exploration. 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 16  
 

2.4. Fuzzy Logic
 

2.4.1. Basics of Fuzzy Logic 
 
Term  ‘fuzzy  logic’ stands  for  “means of presenting problems to computers  in a way akin  to 
the way humans solve them.” [D. M. Bourg and G. Seeman, 2004, p. 188] While computers 
deal with numbers, people tend to classify their perceptions and act upon this classification. 
The  logic  originally  introduced  by  L.  Zadech  in  1965  provides  a  way  to  categorize  input 
values  in  a  way  that  humans  do,  i.e.  by  giving  each  value  a  degree  of membership  to  a 
certain group (e.g.  if a person  is 1.9m tall, we can say he  is 20% medium height and 80% 
very tall).  
 
Fuzzy logic has a number of uses in computer games [D. M. Bourg and G. Seeman, 2004, p. 
190], namely: 
a) Control – the environment and objects around can be evaluated and steering forces 
determined  

b) Threat  assessment – a number of factors can be looked at, e.g. if enemy is far or 
close,  if  it seems dangerous or  friendly, etc. Fuzzy  rules  (please  read 2.4.3. below) 
can be used to determine an output action. 

c) Classif ication – Similarly to threat assessment, we can ‘fuzzify’ (classify using fuzzy 
terms)  various  characteristics  of  objects  and  let  the AI  decide  upon  them. We  can 
either trigger actions or get numeral output (please read 2.4.3. below) 

 

2.4.2. Fuzzif ication 
 
Fuzzification means converting a numeral input (e.g. height of an object) into fuzzy sets (e.g. 
‘short’, ‘medium height’, ‘tall’, etc). A membership function can be used to convert a number 
into degrees of membership for each of the possible fuzzy sets.  
 
Figure  2-2  shows  an  example  of membership  functions  for  converting  a  numeral  value  of 
height. Note that each of the functions for  ‘short’,  ‘medium height’ and ‘tall’ have a different 
shape. There are no pre-defined rules about the shape of the functions, although a few types 
have been established [D. M. Bourg and G. Seeman, 2004, p. 194-199]. 
 
If the input is for example 1.2m, we run this value through all three functions. This will give us 
membership  grades:  100%  short,  0% medium  height,  0%  tall.  If  the  input  was  1.9m,  the 
grades would  be:  0%  short,  50% medium  height  and  50%  tall.  This means we  don’t  only 
classify objects as ‘tall’ or ‘short’, we can also determine how much tall or short something is 
and act  upon  that.  In  a  different  case, we  could  have a  rule which  says  ‘if  enemy  is  40% 
healthy, start attacking it, otherwise run away).  
 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 17  
 

 
Figure 2-2 – grade, trapezoid and reverse grade membership functions 

 
 
We  could  extend  add  as  many  fuzzy  sets  as  necessary,  depending  on  what  the  current 
situation demands.  
 

2.4.3. Fuzzy Rules and Defuzzif ication 
 
After the input has been fuzzified, it can be used when determining output. This can be done 
in  two  ways:  we  either  set  up  rules  which  will  fire  an  action  or  we  produce  crisp  output 
numbers. 
 
 
Fuzzy rules 
Fuzzy rules can be applied when we are deciding upon an action to take based on a certain 
input. After the degrees of membership of a person being short, medium size and tall have 
been determined, we might want  to  say e.g.  ‘if  small  buy high-heeled shoes’. Moreover,  if 
there  is a number of  fuzzified  sets which  classify not  only height  but  also mood,  colour of 
hair, etc, more complex rules can be established, e.g.  ‘if  tall and blond hair buy a black T-
shirt’. 
Similarly to the Boolean logic, axioms like AND, OR and NOT can be used with fuzzy terms. 
However, in fuzzy logic functions which will calculate results of using such statements need 
to be created. Example 2-1 shows how these can be calculated. 
 

A or B = MAX (A,B)
A and B = MIN (A,B)
not A = 1-A

Example 2-1 – fuzzy axioms [D. M. Bourg and G. Seeman, 2004, p. 200] 
 
As an example,  if  the hair colour  is 50% blond and height  is 100%  tall,  the  result of using 
AND would be only 50% truth. On the other hand, the OR operation would return 100% and 
trigger an action. 
 
 
Defuzzif ication 
In Boolean logic, rules like ‘if obstacle in front than steer left’ or ‘if no obstacle go ahead’ can 
be set up. This means that actions can only be taken after objects are completely in front or if 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 18  
 

the space  in  front  is completely  free. On the other hand, having degrees of membership of 
where the obstacle is provides a more efficient way to determine to what degree actions are 
done – if obstacle is 70% in front (e.g. it is slightly to the right), the steering can be adjusted 
accordingly. The same result could be achieved by evaluating the obstacle’s relative position 
as a  floating point number – however, we would  lose  the control of classifying  the position 
which could cause problems if the test was used throughout the code. 
 
To calculate a crisp output (e.g. the steering force), we can use a geometric centroid of the 
area  under  the  output  fuzzy  set  or,  in  a much more  simple  case,  a  predefuzzified  output 
function [D. M. Bourg and G. Seeman, 2004, p. 204]. To calculate the predefuzzified output, 
we first assign values to each of the fuzzy sets, e.g. -10 for object to the left, 1 for object in 
front  and  10  for  object  to  the  right.  Than  the  degrees  of membership  are  calculated,  e.g. 
object  is 0% to  the  left, 70% to  the  front and 40% to  the  right  (note  that  the degrees don’t 
have to sum up as 100%). To calculate the output , the following equation can be used: 
 

Output = (0*(-10) + 0.7*1 + 0.4*10) / (0+0.7+0.4) = 4.27

  Example 2-2 – calculating defuzzified output 
 
If we know that output -10 (object is completely to the left) should result in full steering to the 
right, etc, we can use the output value to adjust the steering force to the degree it is needed 
to. 

2.5. Conclusion
 
The  chapter  gave  us  an  insight  into  the  current  state  of  the  AI  development  and  trends. 
Today’s players  find  it  important  that  the artificial NPCs behave  in a sophisticated way and 
have some kind of unpredictability and autonomy incorporated in their behaviour. 
We  also  discussed  how movement  in  a  virtual  world  can  be  developed  and  a  number  of 
approaches  to  obstacle  avoidance  including  waypoints,  vector-field  histogram,  potential 
function  and  tracing  algorithm.  Furthermore,  we  had  a  look  at  task  representation  and 
processing, how AI can  formalize  tasks and how  they can be understood as objects which 
can be manipulated and stored. 
 
In the end fuzzy logic was introduced. Fuzzifying input not only gives developers a chance to 
produce behaviour based on more human-like classification and rules but also keeps ways of 
evaluating the input separate from ways of producing the output. This is very important if the 
input  is  used  throughout  the  code and  changing means of  evaluating  the  current  situation 
would be time-consuming if we were working with Boolean or floating point numbers. 
In  the  next  chapter,  we  will  look  at  creating  a  2D  world  with  primitive  inhabitants  and 
development of basics of their intelligent behaviour. 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 19  
 

 

3. Creating an Entity in a 2D World
 

 

In  the  previous  chapter  we  discussed  a  number  of  theories  for  obstacle  avoidance,  path 
finding  and  various  aspects  of  artificial  intelligent  behaviour. We will  use  the  accumulated 
knowledge  throughout  the  following  sections  and  show  how  some  intelligence  can  be 
implemented. Creation of Alien Farm, a simple strategy game where units display emotions 
and react on tasks given to them by user will be discussed. In this chapter the basics of their 
behaviour will be described. 

 

There  are  various  aspects  which  need  to  be  considered  when  creating  a  2D  world  and 
entities which live in it. How to represent world objects? How to calculate movement between 
points A and B and more importantly, how to make sure that an entity reaches its destination 
while avoiding all obstacles on its way? 

 

The section will describe creation of obstacle avoidance algorithm between circular objects. 
To solve the problem, vectors  in entities  local coordinate system can be used to determine 
relative  position  and  distance  from  obstacles.  Combined  with  the  information  about 
obstacle’s proportions,  the steering  force can be calculated  in order  to  turn an entity away 
from obstacles. Even more realistic movement can be achieved by adjusting the speed - an 
entity should slow down when it is close to an obstacle in order to avoid it more carefully. 

 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 20  
 

3.1. The System Structure, World Coordinates and Mapping
 
Please  refer  to  Appendix  G  to  see  a  simplified  UML  diagram  of  the  artefact  where  all 
important class members mentioned throughout the following chapters are listed. 
The  programme  is  structured  in  a  usual  way:  there  is  a  game  states which  represent  the 
main menu and the play state. The play state holds the actual game world where the terrain, 
buildings and units are placed. 
 
In the beginning of creation of any game, there is a challenging task to accomplish: establish 
a  coordinate  system  in  a  newly  created  world.  It  is  always  difficult  to  navigate  in  an 
environment where boundaries are not clear or where you cannot specifically identify where 
exactly you are. Therefore, first an anchor point should be declared, i.e. a point which can be 
represented by coordinates [0;0] (or [0;0;0] in a 3D world). Also, movement direction has to 
be taken into account,  in other words, how coordinates will chance if user moves right,  left, 
up or down.  
 
Alien  farm  has  the  anchor  point  in  the  middle  of  the  world.  The  game  starts  with  view 
centred, i.e. point [0;0] is in the middle of the screen. This point was chosen because centre 
of the screen is the only point common to all screen resolutions – it is sure that if the screen 
width and height are halved than the rendered view will always be centred. 
 
The scale of the world is 4000 x 3000 units (pixels in terms of rendering), so an object can 
have coordinates X = <-2000; 2000> and Y = <-1500; 1500>. Appendix H shows the world 
axes. 
 
Mini map 
The  mini  map  is  based  on  an  idea  of  the  virtual  world  shrunken  so  that  it  fits  into  the 
285x214px area of the map. To achieve this, the coordinates and the size of all objects need 
to be converted before rendering the map objects. First the magnifying factor is calculated by 
comparing the real and the map size. It is then used to convert all three attributes, X, Y and 
diameter of objects. Example 3-1 shows how to convert the X coordinate of an object:

float magnifyFactor = float(iWorldXScale*2/iMapXScale);
float origX = anObject->GetWorldX();
float mapX = centreOfTheMapX+ origX/magnifyFactor;

Example 3-1 – calculation of the map X coordinate 
 
Appendix H shows the working mini map. 

3.2. Model of an Agent
 
The following is a description of the classes which an agent is composed of. Please refer to 
Appendix G to see how the classes link to each other.  
 
The Agent class 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 21  
 

The agent class is responsible for general agent activities like calculating the life time, dying, 
eating and handling the mouse. Furthermore, the following classes have been used to deal 
with various aspects of the behaviour: 
 
Behaviour engine 
The class handles  the  three agent states:  idle, moving  towards and performing. Figure 3-1 
shows relationships between the agent states. The engine also handles speech, i.e. decides 
what kind of sentence to say depending on the current happiness and action. 

 
Figure 3-1 – agent’s state diagram 

 
 
Motion engine 
The class handles all  the movement,  target  following  (i.e. navigation  to a given point on a 
map)  and  obstacle  avoidance.  The  individual  algorithms  for  calculating  movement  are 
described in sections 3.4. - 3.6. 
 
Sensors engine 
The engine is used by the Motion and Behaviour engines to get information about the outside 
world. Among other features, it is able to find the nearest building of a certain type, determine 
which side an object  is on relative to  the agent (e.g. north, west, south west, etc.) and find 
out if an object is in a certain radius around the agent. 
 
Inner sensors engine 
The  class  deals  with  the  inner  state  variables.  The  engine  uses  fuzzy  logic  to  determine 
degrees  of  happiness  values  (happy,  normal,  sad)  and  activity  values  (lazy,  moderate, 
active). It can provide the other classes with: 

• individual degrees of these values 
• general  happiness  or  activity  scale:  values  are  in  range  <0;  1>  and  are  used  to 
determine percentage of one of the state variables. The scale is used for example to 
display the state bars (further details will be discussed in section 5.4.) 

• general  happiness  or  activity  weight:  values  are  in  range  <-1;  1>  and  are  used  to 
adjust an attribute of agent. If 0 is normal than -1 (i.e. 100% sad or lazy) decreases 
an attribute value and vice versa (further details will be discussed in section 5.4.). 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 22  
 

Memory engine 
Memory  engine  handles  the  task  queue.  Tasks  (e.g.  ‘gather  grain’)  can  be  added  to  the 
queue by other classes (mostly the behaviour engine). New tasks are added to the end of the 
queue and the current task is in the 0th position. When a task has been accomplished (e.g. 
an agent  has  its  cart  full  of  grain),  the whole queue  is  pushed and  the next  task  is  set  to 
current (e.g. ‘return to silo’). 
 
A  task  is  represented  by  a  struct  variable which  has  attributes X  and Y  coordinate  of  the 
target,  type  of  a  task  (gather  crystals,  gather  grain,  unload  cart,  no  action,  go  to  location, 
breed) and the array index of the target (e.g. of farm or silo), similarly to the PAR objects [J. 
R. Lee and A. B. Williams, 2004] (read more in section 2.3.1.). 
The type of a task tells the Behaviour engine what to do. Coordinates and array index of the 
target are used  to  find  the  task’s  location. For  the gathering  jobs,  the  target  is a  farm or a 
crystal. Unloading takes place in a nearest silo. Target of the breeding task is the agent itself 
which means  it  stays  in  its  current  location.  Finally,  target  of  the  ‘go  to  location’  task  is  a 
place on a free terrain  

3.3. Game Interface
 
The  main  class  which  holds  the  user  interface  is  called  CPlayInterface.  It  consists  of  a 
texture put on top of the world with transparent middle, a number of buttons which control the 
interface and  four  tabs which are a part of  the bottom control panel  (Appendix H shows a 
screenshot of the interface). 
 

3.3.1. Bottom Panel Tabs 
 
The  tabs are a 2D array of  the CInterfaceObject  class. They hold all  the  tabs objects  (i.e. 
individual  building  buttons  for  the  construction  tab,  the  god  powers  buttons,  the  ‘colony 
information’ object and the ‘objectives’ object) in individual slots along the array’s x-axis (1st 
dimension).  The  Render  function  of  the  Play  Interface  class  renders  only  objects  from  a 
currently selected tab. The Update function works in a similar manner. 
 
The  individual  objects  in  the  tabs  are  of  separate  classes  which  are  subclasses  of  the 
CInterfaceObject  (Appendix  G).  This  ensures  that  they  can  be  stored  in  one  array  and 
accessed via for loops but have different functionality. 
 

3.3.2. Interface Dialogues 
 
There is a number of dialogues in the game including: game menu, save dialogue, win/lose 
dialogues and messages displayed when player wins a god power. Separate classes could 
have  been  created  for  each,  but  a  quicker  approach  was  taken  in  this  case.  The 
CInterfaceWindow  class  has  an  enumeration  type  variable  which  identifies  a  type  of  the 
dialogue. IF statements are used in the constructor, Render and Update functions to trigger 
the right actions based on the dialogue type. A common feature of the dialogues is having a 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 23  
 

back texture and a number of buttons and click areas (click areas are the same as buttons 
but  they  don’t  have  any  texture).  An  array  of  buttons  and  a  number  of  click  areas  are 
members  of  the  CInterfaceWindow  class  and  each  type  of  a  dialogue  creates  different 
instances of them and handles them individually. 
 
This approach gives the developer better overview of the dialogues behaviour since all code 
is  written  in  one  class.  However,  if  there  were  too  many  types  of  dialogues,  they  would 
probably have to be separated into classes because the code would get too complex. In the 
case of Alien Farm the one-class approach was more effective. 
 

3.3.3. Number of Agents of a Certain Profession 
 
A number of approaches have been taken  in order  to display a correct number of  farmers, 
miners  and  breeders  on  the  screen.  The  problem was  in  determining  in which  part  of  the 
agent update function should the values change. While it first seemed logical to decrease a 
number  of  professionals when  a  new  job  has  been  give  to  an  agent,  a  problem  occurred 
when agent went to the idle state. On the other hand, a handler for the idle state which would 
decrease a profession number was useful, but wasn’t suitable when an agent went to the idle 
state while being in a job, e.g. when there were no silos currently available. 
There seemed to be a lot of combinations when it came to determining whether to increase 
or  decrease  a  number  of  professionals.  None  of  the  methods  seemed  therefore  effective 
enough to cover all the cases. 
The  final  working  solution  was  to  set  a  number  of  agents  in  each  profession  to  0  at  the 
beginning of each loop. Each agent then increases a number in its profession by one so the 
total always matches with the total population. 
 

3.3.4. Mouse Events Detection 
 
In  the earlier  implementation, global Boolean variables  for  left and  right mouse down were 
defined  and  changed  with  the  state  of  the  mouse.  This  appeared  to  be  not  a  sufficient 
solution for the tutorial since the screen would jump by a couple of slides when a button for 
the next slide was clicked. 
The problem was in the main loop – the mouse was handled on every frame. Therefore when 
user pressed a button and there were actions associated with it in a current game state, they 
happened a number of times (loops) while a human would notice a single click. The mouse 
handling was moved to the programme messages associated with mouse events instead. In 
the final  implementation  it behaves as a trigger rather than constantly repeating  loop which 
tests against the mouse state. 
 
3.4. Movement and its Graphical Representation
 
The  implementation  of  an  entity  in  a  continuous  environment  was  based  on  Bourg’s  and 
Seeman’s  (2004) model  (please  refer  to  section  2.2.2  and Appendix C  for  further  details). 
The  thruster and steering  forces are  represented as one movement vector –  its X attribute 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 24  
 

represents the steering (its positive value means steering left) and the Y attribute stands for 
the back thruster force (positive value means an agent is moving forwards). The calculation 
of the movement from the movement vector is as following: 
 

angle = m_vMotionForce.m_fx;

//--CHANGE THE ROTATION VARIABLE m_fRotation USED IN RENDERING:
m_pAgent->SetRotation(m_pAgent->GetRotation()+ angle);

//------ CALCULATE THE VELOCITY IN X AND Y DIRECTIONS:
m_fvx = cos(m_pAgent->GetRotation()*PI/180)*g_iTimeSpeed* m_fSpeed;
m_fvy = sin(m_pAgent->GetRotation()*PI/180)*g_iTimeSpeed* m_fSpeed;

//----APPLY THE VELOCITY AND THE THRUSTER FORCE TO WORLD COORDINATES:
m_pAgent->SetWorldX(m_pAgent->GetWorldX() + m_fvx*
(m_ vMotionForce.m_fy*2));
m_pAgent->SetWorldY(m_pAgent->GetWorldY() + m_fvy*
(m_ vMotionForce.m_fy*2));

//------- ADJUST THE SCREEN COORDINATES:
m_pAgent->SetX(m_pAgent->GetWorldX()+m_pAgent->
GetTerrain()->GetGX());
m_pAgent->SetY(m_pAgent->GetWorldY()+m_pAgent->
GetTerrain()->GetGY());

Example 3-2 – calculation of the movement using a force vector 
 
Example 3-2 shows that after the world coordinates (i.e. where X = <-2000; 2000>, etc) have 
been  calculated,  the  screen  coordinates  are  adjusted  accordingly.  This  needs  to  be  done 
because a user is allowed to move the map and the world coordinates [0;0] are not always in 
the centre of the screen. We adjust the screen coordinates by adding the difference in which 
the  view  moved  (Terrain->GetGX(), Terrain->GetGY())  to  the  world  coordinates. 
The X and Y attributes of  the movement vector are set  to 0  in  the beginning of each  loop 
frame  and  their  values  are  increased  or  decreased  in  the  target  following  and  obstacle 
algorithms discussed in the further sections. 
 
To display an alien  in different positions (rotations),  the alien  image could be rotated when 
rendering is performed. However, this would produce rather awkward images since the game 
uses asymmetric view. The alien model has been created in 3D Max Studio (a 3D creation 
tool) which allowed for creation of four views taken from each side and rotated appropriately. 
When  the  rotation  of  an  agent  changes,  the  texture  image  changes  as  well  and  is  than 
rotated only by <-45; 45> degrees. Please refer to Appendix I for a detailed description of this 
approach. 

3.5. Navigation Towards a Target
 
An  agent  is  able  to  determine  its  relative  rotation  towards  a  certain  target  location 
represented by X and Y coordinates. This was done using the X value of a vector pointing 
from  an  agent  towards  a  target  in  agent’s  local  coordinate  system  [D.  M.  Bourg  and  G. 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 25  
 

Seeman, 2004, p. 17-19]. If X is greater than zero, the target is on the left side of an agent 
and it is on the right side if the X value is negative. If X equals zero the target in front so there 
is no steering necessary.  
We can use  the X value of  the  local pointing vector not only  to determine  target’s  relative 
rotation but also to adjust the X component of the thruster force using the following equation: 

m_vThrustForce.m_fx += vectorToTarget.m_fx*A_CONSTANT;

Example 3-3 – calculating the steering force based on target’s relative location 
 
Value of the used constant was determined by trial-and-error and set to 10.5. 
Similarly, agent’s speed can be calculated based on the distance from the target so that the 
unit slows down when  it approaches a desired  location. To do  this a vector pointing  to  the 
target in the global coordinate system is created and its magnitude is taken into account:  

if (v.Magnitude() < 50){
 m_vForceSteering.m_fy = v.Magnitude()/50;
} else {
 m_vForceSteering.m_fy = 1;
}

Example 3-4 – calculating the thruster force based on target’s absolute location 

Calculations of both local and global vectors are based on Bourg’s and Seeman’s methods 
for a vector class [D. M. Bourg and G. Seeman, 2004, p. 349-358] 

3.6. Obstacle Avoidance
 
When  there  are  obstacles  around  an  agent  and  its  sensors  detect  them,  the  X  and  Y 
components  of  the  thrust  force  are  adjusted  based  on  an  angle  and  a  distance  from  all 
obstacles around which have a certain distance from the agent [D. M. Bourg and G. Seeman, 
2004,  p.  75].  The  algorithm  traverses  through  all  obstacles  and  gets  their  positions  and 
diameters  from  the  CTerrain  class.  For  each  obstacle,  a  vector  which  represents  agent’s 
direction  and has  a  certain magnitude  (which  represents  radius  of  sensors)  and  a  relative 
vector towards the obstacle are drawn. The obstacle is in the agent’s way if 
1. Magnitude of  the  look at vector V  is bigger  than magnitude of  the vector A pointing 
towards the obstacle 

2. Magnitude of vector B (which is a difference between vector A and its projection onto 
vector V) is smaller than obstacle’s radius 

 
Here we can see the benefit of representing the steering force as a real number rather as a 
Boolean  variable  (e.g.  bool  leftThrusterOn,  bool  rightThrusterOn). Different  angles  towards 
obstacles help  to determine  the  final weight of  how much  the  left  and  right  thruster  forces 
need  to  used.  Similarly,  different  distances  and  radians  of  objects  help  to  determine  the 
speed of an agent. 
There were some issues with this approach identified in section 3.7. below. 

3.7. Testing and Evaluation
 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 26  
 

The following is a record of testing obstacle avoidance. Each test was done 5 - 10 times and 
the images below show one situation for each type of test. To track movement of an agent, a 
member array was implemented which keeps record of previous locations and displays them 
as a series of ‘steps’ on the ground. The steps get closer together when an agent is moving 
more slowly.  
 
Avoiding single obstacles 
During this test an agent started in front of an obstacle and was supposed to move forwards/ 
backwards with the obstacle in its way. 
 
Small obstacle 
Agent started from point A, moving 
forwards towards B, C and D. The 
path  is  rather  triangular,  with 
maximum  distance  from  obstacle 
when its centre is in line with the X-
axis  of  agent’s  local  coordinate 
system.  After  this  point  the  angle 
changes  rapidly  to  follow  the 
agent’s target. 

Figure 3-2 – avoiding a small obstacle 
 
Large obstacle 
The  agent  managed  to  keep  a 
distance  from  the  obstacle  while 
travelling around  it. The difference 
between  angles  got  smaller  and 
the  shape  of  the  path  looks more 
like a circle. 

Figure 3-3 – avoiding a large obstacle 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 27  
 

A  problem  occurred  when  agent 
was  supposed  to  go  too  close  to 
an  obstacle.  It  needed  to  turn 
couple  of  times  in  order  to  reach 
the destination. 

Figure 3-4 – going close to a large obstacle 
 
Avoiding a wall of obstacles 
During  this  test,  a wall  of  rocks was  created  by  placing  several  rock  objects  next  to  each 
other. Agent was instructed to get from one side of the wall to another. 
 
Testing  proves  that  the  method 
used  for  calculating  the  steering 
angle is not quite suitable for a wall 
of  obstacles.  The  agent  chose  to 
go across the left obstacle since its 
repulsive effect was neutralised by 
the right obstacles.

Figure 3-4 – avoiding a wall of obstacles, case 1 
In the second case, when the alien 
was supposed to turn back from B 
towards C, a forest was in its way. 
It  continued  finding  a  way  around 
by  trying  different  angles.  This 
resulted  in  taking  a  route  around 
the  bottom  part  of  the  obstacle 
wall. 

Figure 3-5 – avoiding a wall of obstacles, case 2
 
 
 
 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 28  
 

Moving between a group of obstacles 
The movement between a number 
obstacles  was  tested  as  well.  An 
agent was supposed to find its way 
across a field of trees and rocks. 
Figure  3-6  shows  that  the  tests 
were  quite  successful  apart  from 
the part where the agent crossed a 
forest while moving towards points 
D. This was caused by the problem  

Figure 3-6 – moving between a group of obstacles, case 1 
already mentioned during avoiding a wall of obstacles test. 
The  agent  was  successful  in 
finding  its way  in  the second case 
as  well.  This  time  there  was  no 
wall  of  obstacles  created.  The 
agent  ‘touched’  the  forest  close  to 
the point B but managed to find its 
way in all other cases. 

Figure 3-7 – moving between a group of obstacles, case 2 
 
Moving multiple units 
During  this  test,  two  agents  were 
moved  from  points  A1  and  A2 
towards  a  point  behind  the  forest. 
Figure  3-8  shows  that  first  they 
ended  opposite  to  each  other, 
facing  their  target  (points  B1  and 
B2). However, a problem occurred 
when multiple units were moved to 
one location in a certain angle from  

Figure 3-8 – moving multiple units 
their starting location. All ended in one place and covered each other (points C1 and C2). 

 
 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 29  
 

3.8. Minor Additions and Improvements
 

3.8.1.  Steering  Towards  a  Target When  It  Is  Right  at  the  Back  of 
an Agent 
 
In  section  3.5.  a  target  following  algorithm  was  introduced.  The  technique  is  based  on 
calculation  of  relative  position  of  a  target  and  then  steering  towards  it  based  on  a  vector 
pointing to its location.  
A problem occurred when a target was right at the back of an agent, i.e. the local vector’s X 
attribute was 0. This resulted in no steering at all and an agent would go straight away from 
the target in attempt to find it. 
The implemented solution tests whether a target is at the back when the X attribute is 0 by 
comparing the target’s position with the position of an agent while taking agent’s rotation into 
account.  Please  refer  to  Appendix  J  where  you  can  find  a  detailed  description  of  this 
algorithm. 
 

3.8.2. Obstacle Avoidance 
 
The  testing  presented  in  section  3.7.  shows  that  the  obstacle  avoidance method  used  by 
Bourg  and  Seeman  (2004)  is  suitable  for  single  radial  objects  or  a  group  of  such  objects 
which have a sufficient distance  from each other. Agents managed  to avoid  the objects  in 
each case. However, when it comes to differently shaped obstacles or a wall of objects, the 
repulsion forces are likely to get neutralised which results in agents taking a way across one 
of the obstacles. 
Since  there  was  not  enough  time  available  to  implement  a  different  obstacle  avoidance 
solution, rules about creating the world have been established: 
1. All obstacles are of a  radial shape. This shape has  to be apparent  from all objects’ 
textures. 

2. Obstacles  cannot  be  placed  close  to  each  other;  certain  space must  be  kept  free 
around each. This needs to be true both when a terrain is created and when buildings 
are built by the player. Please refer to sections 4.1. and 6.1 where it is described how 
the system makes sure this is true. 

 

3.8.3. Problem with Agents Covering Each Other 
 
It was shown in section 3.7. that when two or more agents are moved to one location, their 
ending positions are the same if  their paths cross at some point. This results  in two agents 
covering each other which makes one of them not visible. 
To overcome this problem, a simple algorithm was added to the agent’s behaviour: when it 
reaches  the  idle  state  (i.e.  ends  its  movement)  it  check  against  all  agents  which  have  a 
higher array position (a position in the CWorld’s array of agents). If this is the case, an agent 
chooses a random location close to its original position. Appendix K shows implementation of 
this algorithm. 
 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 30  
 

3.8.4. Agent Circles Around an Object If It  Is Sent to Go Inside It 
 
When a GoTo task was given to an agent and the target location was inside of a building or a 
terrain object, the obstacle avoidance algorithm prevented agent to reach its destination and 
it would circle around the object until it was given another task. The problem was solved by 
implementing  an  algorithm  in  the  Motion  engine  which  tests  whether  a  currently  avoided 
obstacle  had  target  of  a  current  action  inside  it.  If  this  is  the  case,  agent  stops  when  it 
touches walls of the obstacle. This has proven to be an effective solution for the GoTo tasks 
as well as unloading (target is a silo) and gathering crystals (target is a crystal) tasks. It is not 
necessary  to  run  this algorithm  for  the gathering grain  task since agents are allowed  to go 
through a farm. Appendix L shows the implementation of this algorithm. 

3.9. Conclusion
 
In this chapter  it was discussed how a 2D world can be created and how important  it  is for 
any  further  development  to  establish  its  coordinate  system.  It was  shown how an  artificial 
agent  can  be  created  and  moved  in  this  world,  what  problems  came  up  during  the 
implementation and how they were solved by adding extra algorithms to the system. 
 
We  chose  an  approach  to  obstacle  avoidance  based  on  extracting  information  about  the 
world  objects  around.  The  used  algorithm  counts  with  radial  objects  and  to  optimise  the 
performance, rules such as that objects cannot be close to each other were established. This 
was  due  to  the  downsides  of  the  performed  vector  operations.  If  the  calculations  were 
improved  to  deal  with  any  kind  of  shape  of  objects  and  a  group  of  objects,  the  approach 
would be much more effective. Especially because there doesn’t have to be an abstract layer 
such  as  a  mesh  of  waypoints  stored  in  the  system.  An  agent  is  able  to  respond  to  an 
‘unknown’  environment  simply  by  querying  about  surrounding  objects’  information.  The 
querying algorithm could also be improved by filtering the array of objects so that an agent 
doesn’t  have  to  go  through  the  whole  array  of  obstacles  but  is  able  to  select  only  the 
applicable ones.  

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 31  
 

 

4. Creating Strategy Game Features
 

 

This  chapter  will  introduce  the  main  strategy  game  features  and  how  their 
development  was  done.  In  each  strategy  game  there  are  certain  resources  and 
buildings which player can build using collected  raw materials. Also, some kind of 
nourishment is required for units to live - Alien Farm uses grain and farms for units 
to gather it. Furthermore, a colony needs to grow its population. This is usually done 
either  by  ‘building’  units  or  letting  units  to  breed.  The  project  artefact  uses  the 
second approach since it is more realistic - each unit can multiply into a number of 
new ones. This takes both time and willingness to breed. 
 
Saving and loading a game is also important, especially if the game play should last 
for  more  than  30  minutes.  Players  often  need  to  go  away  and  come  back  and 
without  the  ability  to  save  their  progress,  a  game  can  be  rather  frustrating.  The 
important question here is how to represent the game world in a way which can be 
written into an external file and read back when it is needed. XML provides a good 
structure for representing any kinds of data and relationships between them. Nodes 
on trees can represent both concrete structures as well as logical groups. A number 
of XML parsers exist  for C++ and the project artefact uses an extended version of 
open-source parser called TinyXML [L. Thomason, 2006]. 

 

 

 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 32  
 

4.1. World Objects and Buildings
 
This  section  will  show  how  the  terrain  objects  (hills,  trees,  swamps)  and  buildings  were 
created  in Alien Farm. There are  two arrays held by  the CTerrain class, one for  the  terrain 
objects and one  for buildings. Both are subclasses of  the CObject class but have different 
characteristics (please refer to Appendix G to see a UML diagram of the artefact). While the 
terrain objects are basically obstacles and have no special  functionality, all  buildings apart 
from a house can be interacted with. This includes a farm, a crystal field and a silo. The first 
two are used  for gathering resources and  the  last one  for unloading agent’s cart  (returning 
resources to the ‘base’). 
 
There are  three types of buildings user can build: house,  farm and a silo. The construction 
panel shows all  the buildings types and their costs  in crystals (screen shot  in Appendix H). 
Player can click on a building type which attaches the building to the mouse and then place 
the building on a map. 
 
The  icons  of  buildings  are  of  the  CInterfaceBuilding  class  (Appendix  G).  They  have  a 
Boolean m_bIsDragged member variable which allows for attaching a building to the mouse 
by being set to true when user clicks on one of the icons. When a building is placed on the 
terrain,  user  attempts  to  do  so  but  doesn’t  have  enough  resources  or  cancels  building  by 
clicking back on its icon, the flag is set to false and the cursor is free again. 
 
When user attempts to place an attached building on the terrain, arrays of buildings, terrain 
objects and agents are  iterated  through  to ensure a building  is put on a  free space. To do 
this, the equation of a circle is used: 

(x-a)2+(y-b)2 = r2
Example 4-1: Equation of a circle [MMU Partnership server] 

 
Where r is the diameter of an existing object, X and Y are the mouse coordinates (since the 
position of a new building would equal to mouse position if it was pressed) and A and B are 
existing object’s coordinates. An extra value is added to the right side of the equation in order 
to keep space between objects (reasons for this are mentioned in section 3.7.2.) 

4.2. Gathering Resources
 
The Behaviour engine  is  the main class which handles gathering  resources  (as well as all 
other  tasks). When a resource (farm or a crystal)  is clicked on, a new task  is added to  the 
beginning  of  the  task  queue  stored  in  agent’s  memory  engine.  The  Memory  engine  than 
deletes all other tasks from the actions queue and sets the gathering task as a current one.  
Afterwards, the behaviour engine handles the current task. While gathering, the amount of a 
resource in agent’s cart is increased each frame until it reaches a certain value. The speed of 
gathering  is  synchronized with  the overall  game speed. When  the  cart  is  full,  the Sensors 
engine finds the closest silo and sets unloading the cart at this location as a new task. Also, 
the coordinates of the resource are remembered so that agent can come back to it once its 
cart is empty again. 
When an agent reaches a silo, the unload cart task is executed. This involves decreasing the 
amount of a resource in the cart until it is empty. The amount of a resource is than added to 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 33  
 

the colony’s resources, i.e. member variables stored by the CWorld class. Gathering task is 
added to the beginning of the actions queue with the remembered location of a resource and 
the whole process repeats. 
 
If  a  user  chooses  a  different  task  for  an  agent,  this  is  added  to  the  beginning  of  the  task 
queue and any existing gathering tasks are deleted. 
Appendix M shows a graphical representation of the gathering algorithm. 
 
There  is a  limit of one agent working on a  farm and  three agents working on one crystals 
field. This forces the player to extend the colony’s territory and find new crystals. Each farm 
or crystal store an array of agents  indexes working  there. When an agent attempts  to start 
gathering,  it  first  queries  the  target  building whether  it  is  free.  If  not,  it  refuses  to  take  the 
action and switches to  the  Idle state.  If  there  is a  free space, agent registers  itself with  the 
building and starts gathering. 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 34  
 

4.3. Breeding
 
Each  agent  is  able  to  breed,  i.e.  create  up  to  five  clones  of  itself.  The  number  of  clones 
depends on agent’s current happiness. The agents are set to be hermaphrodites so only one 
alien  is needed  for multiplication. Breeding  is  very similar  to collecting  resources. The cart 
now acts as a container for counting how many days are left for an agent to multiply. Its initial 
value moves between 100 and 300 and depends on agent’s current happiness. The days left 
to multiply  decrease  each  frame  so  that  7  days  equals  1 week  on  the  time  display  at  the 
bottom of the user interface. 
 
When the amount of days is 0, agent multiplies - creates copies of itself by calling a CWorld 
method (Figure 23). To avoid having the new agents at  the same place,  i.e. covering each 
other  they  are  immediately  sent  to  the  Idle  state.  The  same  algorithm which was  used  to 
prevent units ending their movement at one place is used (Appendix K). Before this algorithm 
was  created,  a  different  one  was  used  to  send  new  agents  to  a  place  further  from  their 
parent. Section 4.6. explains the differences. 
 
Originally,  an  agent  continued  breeding  until  it  had  a  certain  amount  of  children.  After 
observing  various  players  testing  the  game,  the  feature  has  been  modified  so  that  the 
population is easily controllable. In the latest implementation version, agent goes to the Idle 
state immediately after producing the first population of children: 

m_pAgent->GetWorld()->AddAgent(thisX,thisY,0);
m_pAgent->GetWorld()->GetAgent(m_pAgent->GetWorld()->GetNumAgents()-1)-
>GetMemoryEngine()->AddAction(0,0,eActionNone,-1,true);

Example 4-2 – adding a new agent to the world from the agent class and sending it to the Idle state 

4.4. Using XML to Save and Load a Game
 
Simple txt files or tables can be used to store a small amount of data. However, working with 
1D  or  2D  sets  of  data  starts  being  difficult  when  a  detailed  structure  of  data  (such  as 
information about  various aspects of  the world)  is  required. Therefore,  a different mean of 
grouping the information is needed. 
XML  (Extensible  Markup  Language)  is  a  general-purpose specification for  creating 
custom markup languages. It is extensible which means that user can define his own markup 
elements  [Wikipedia  XML].  In  comparison  with  HTML  which  is  a  markup  language  for 
browsers,  user  can  define  any  kind  of  document  markup  [TinyXML  documentation]  and 
define a structure suitable for the current situation. XML can be used for data transport (as it 
provides a common structure which can be  interpreted by any application), creation of new 
Internet  languages  (e.g.  XHTML,  RSS,  WAP,  etc.)  [W3schools]  or  by  various  other 
applications  (like C++, Flash or Java applications)  to store data  in external  files or provide 
means of scripting the behaviour of such applications (an example would be a Flash photo 
gallery which reads information about its images from an external XML file). 
 
In Alien Farm, XML was used to save data about the current state of the world and objects 
inside  it  to allow user  to save a game and  load  it  later on. Five game slots were provided 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 35  
 

where each of them has an associated xml file stored in the game’s installation directory. A 
XML  parser  had  to  be  used  in  order  to  manipulate  the  markup  using  C++.  Open  source 
parser TinyXML [TinyXML main] is able to parse and XML document and build a Document 
Object  Model which  is  a  C++  object  which  can  be  manipulated  and  saved.  [TinyXML 
documentation].  To  use  the  parser,  additional  methods  were  required,  including 
GetNodeAt(parentNode, nodeIndex), GetNumberOfChildren() and

GetFileIsEmpty(fileName) and  methods  for  saving  and  loading  the  game  data. 
Therefore, additional class CXmlHandler was added to the project. The XmlHandler provides 
an interface between TinyXML and other classes. 
 

4.4.1. Objects Representation in a XML Tree 
 
When  a  game  is  being  saved,  the  XmlHandler  class  queries  the  CTerrain  and  CWorld 
classes about the game state, terrain objects and state of aliens and save this information in 
a  tree  structure.  Individual  branches  of  the  tree  represent  object  groups:  terrain  objects, 
buildings and units. Leaves on  these branches represent  the objects  themselves and have 
certain attributes associated with these objects. 
The  tree  begins with  a  gameInfo  branch which  stores  all  necessary  data  about  the  game 
state,  including amount of  gathered  resources,  current  time and  information about  state of 
the god powers (Appendix O). Terrain objects and buildings form the following two branches 
of the tree. The leaves store information about their world coordinates. Terrain objects data 
also includes objects diameters and shape seeds (these two attributes are not necessary for 
the building objects as their values do not vary). Agents are grouped in the last branch of the 
tree. The  individual sub branches are named according to agents and have attributes such 
as the world coordinates, age, an indicator whether an agent is dead and various attributes 
associated with agents’ tasks. An agent branch has two leaves which represent the current 
and  the  last  action.  The  attributes  are  a  blue  print  of  the  Action  object  attributes  (actions 
representation is discussed in section 3.2.). 
 
The Load screen which can be called from the Main Menu gives a list of the available slots. 
All slot names are provided, however only the ones which have been used are clickable. The 
load screen stores an array of five button slots. In the constructor, each save slot is checked 
whether  its  corresponding  file  exists  by  using  XmlHandler’s  GetFileIsEmpty(fileName)
method. At the end of the FOR loop, the array holds Boolean variables which tell the system 
which slots have been used. The Render function than displays buttons on appropriate slots. 
 
When a game is being loaded, the tree is iterated through by the XmlHandler class. First, the 
game  information  is  read and  the  current  game state  is adjusted. Then  the  terrain objects 
and buildings are created using their  leaves attributes. Finally the agents are placed on the 
terrain and their state is restored using the two action leaves. The last action is remembered 
by the Memory Engine and the current action is added to the task queue. The game state is 
changed  to  the  Play  State  with  a  flag  which  specifies  that  the  terrain  has  already  been 
created and there is no need for creating a random map or additional agents. When a game 
starts, all objects are at the right place and agents restore their work where they left it.  

 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 36  
 

4.5. Dying
 
Implementation of dying gave an extra  realism  to  the game. All agents definitely die when 
they  are  5  years  old. However,  they might  die  younger,  based  on  current  food  store.  The 
death age starts dropping down if the amount of food per alien is smaller than 60. If food per 
alien is 0, they all die. 
When an agent dies it frees its current resource target (a farm or a crystal field, further details 
in section 4.2.) and is given a different texture coordinates in order to display a grave on its 
position (Appendix N). Also, its Update function doesn’t include any of the algorithms needed 
by a live agent such as target following, obstacle avoidance and tasks handling. For a certain 
amount of time the Update function still runs, calculating how long an agent has been dead. 
When a given time is expired, agent is deleted from the CWorld’s agents array and all agents 
stored after  the agent’s  array  index are moved  towards  the beginning of  the array by one 
slot.  The  index  position  they  remember  is  decreased  by  one.  Also,  the  array  of  selected 
agents is adjusted in the same way and the system is notified about having less agents. 

4.6. Testing and Evaluation
 
At  this  stage  of  development  the  game  was  played  at  least  10  times  which  provided  an 
opportunity  to  try many  various  objects  positions  and  terrain  scenarios. Attributes  such  as 
gathering speed, amount of resources agents can carry, amount of clones they produce and 
time needed to multiply were adjusted to optimise the game play. The following screen shots 
display a chosen particular test situation each. 
 
Gathering a resource 
A selected agent was given a gathering task by right clicking on a farm/ crystal (point A1). It 
than  returned  the  resource  to  the silo  (B) and  repeated  the  task  (A2, B2, A3). The  results 
were satisfactory since the agent continued gathering until it was given another task. 

   
          Figure 4-1 – agent given a farming task    Figure 4-2 – agent given a mining task 

 
Gathering a resource – multiple agents 
When multiple agents approached a crystal (silo), each of them stopped in front of it based 
on where  its movement  started  (a  behaviour  based  on  the  algorithm  described  in  section 
3.7.4.). This prevented agents to group in front of a crystal (silo) at one place, but only when 
their initial positions were different. Figure 4-3 shows the behaviours of multiple agents (1-3): 
they all started at different positions (A1-A3) and moved  towards  the crystal  (B1-B3). Then 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 37  
 

they  returned  the  resources  to  the nearby silo  (C1-C2) and came back  to  the crystal, now 
ending  closer  together  (D1-D3).  Figure  4-4  shows  that  after  a  number  of  iterations  two 
orange units started gathering from the same location (circled) because of minor changes in 
their movement trajectories during the iterations. This behaviour prevents user to select the 
bottom agent while both are gathering. 

     
     Figure 4-3 – multiple agents given a mining task  Figure 4-4 – multiple agent mining, after 5 

iterations 
 
A way around  this  problem would  involve giving one of  the agents a new  task  to  go a bit 
further  to  one  side  and  then  resume  gathering.  This  would  make  it  gather  on  a  slightly 
different place than is the position of the other agent. The solution hasn’t been implemented 
in the final version of the game due to time constraints. 
Finding the closest si lo 
During  this  test  there  were  three 
silos  on  the  map  as  well  as  three 
resource  locations. Each agent was 
ordered  to  gather  one  of  the 
resources  (points  A1-A3)  and  bring 
it  back  to  a  silo  (points  B1-B3). 
Figure  4-5  shows  that  all  three 
agents  found  a  silo  closest  to  their 
location. 
 

Figure 4-5 – finding the closes silo 

Breeding 
An agent was ordered to multiply, creating three clones of itself each time. Figure 4-6 shows 
placement of new clones in the earlier implementation version - the younger the generation, 
the further from the parent its members went when they were created. Each new agent was 
given a new position to go to according to the function 

X = parentX+(1-m_iNumChildrenHad%3)*(30+10*m_iNumChildrenHad);
Y = parentY+(1-(m_iNumChildrenHad+1)%3)*(20+10*m_iNumChildrenHad);

Example 4-3 – old algorithm used to calculate a child’s position after birth 
where the m_iNumChildrenHad variable represents a child’s number. 
 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 38  
 

Figure  3-6  shows  that  no  two  children  ended  at  the  same  place.  This  however  produced 
three lines of new agents which was not an aesthetically sufficient solution. 

 Figure 4-6 – initial implementation of breeding  Figure 4-7- improved implementation of 
breeding 

 
The second implementation was based on a more realistic behaviour discussed in Appendix 
K: when an agent is sent to the idle state, it chooses a random position to go to. This position 
is  in  a  square  with  certain  proportions  around  the  original  position  but  excludes  the  area 
straight under an agent  (so  that  it doesn’t end up at  the same or a very similar place after 
using this algorithm). 
 
Figure 4-7 demonstrates the great improvement in comparison with the first implementation – 
the positions of newly created units  look much more natural. The  image was produced by 
letting  first  three  agents  breed.  Their  children  were  cloned  as  well,  without  moving  them. 
Although  it  took some  time until  each agent  found a  free position, all  of  them managed  to 
avoid the others while keeping away from obstacles. 
 
Dying 
Dying  times  were  tested  by  speeding  up  agents’  own  time  speed  by  50,  i.e.  every  week 
counted as a year. Various initial food in store amounts were used to test against the dying 
conditions: starvation and age. 
 
Saving and loading 
Saving and loading has been tested at least 10 times by saving a game in various states to 
various  save  slots,  checking  the XML documents  the  programme produced,  loading  these 
games and playing them further. 
Although initial results were good and the game was saved and loaded properly, additional 
branches and leaves had to be added as the development proceeded (e.g. information about 
the god powers or agent’s previous task). Please refer to section 6.5.2. to read about further 
improvements which had to be done to provide a stable solution. 

4.7. Minor Additions and Improvements
 

4.7.1. Recognizing Agents in Order to Keep a Record of Them 
 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 39  
 

Each  agent  is  given  a  random  name  from  an  array  of  possible  names  created  in  Agent’s 
constructor  and  destroyed  immediately  after  a  name  has  been  picked  up.  This  helps  the 
player recognize the agents. 
Secondly, while  the  first  implementation had only green aliens,  further version of  the game 
introduced  additional  two  colours:  orange  and  purple  for  a  faster  recognition.  The  agent 
texture  was  doubled  in  size  to  allow  additional  slots  for  the  new  colours.  Please  refer  to 
Appendix N to read about how the texturing algorithm was changed. 

4.8. Conclusion
 
In  this  chapter  it was shown how  the main body of Alien Farm has been created. Objects 
including  hills,  trees,  buildings  and  resources  were  added  to  the World.  Resources  store 
information about the workers using them which prevents more than one alien to work on a 
farm and keeps the amount of miners close to one crystal under 4. 
The  task  processing  algorithm  of  agents  has  been  explained  –  an  agent  is  a  finite  state 
machine and uses  the Memory engine  to  keep  track  of  the  current  and  the  last  task. The 
Behaviour  engine  utilises  the  cart  and  uses  it  when  gathering  resources  as  well  as  to 
calculate how many days there are left until it multiplies. Finally, each agent keeps record of 
its  age  and  dies when  it  exceeds  4  years. However,  agents  can  die  earlier  if  there  is  not 
enough food in store. 
We also had a look at how an XML tree structure can be used to represent data, particularly 
information about the world and units in it. XML has proven to be an ideal structure as it can 
group  information  to  branches  to  provide  a  developer  with  tool  easy  to  test.  In  the  next 
chapter  the aliens will  be given a more human-like behaviour which will  be based on  their 
happiness and activity.  

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 40  
 

 

5. Implementing the Inner State
 

 

Most of  the current  strategy games have units which obey player’s  commands blindly and 
always  in  the  same way.  Therefore,  emotions  can  be  an  interesting  addition  and  help  the 
player connect with the virtual more deeply. 

 

Alien Farm uses happiness and activity to represent  inner state of each entity. The chapter 
will discuss how fuzzy logic was used to evaluate the current state and how to use the inner 
state when adjusting unit’s attributes and behaviour. Although  fuzzy  logic  is quite a simple 
and straightforward concept, it takes a lot of play time and effort to optimise the way it is used 
by  individual  entities.  There  is  no  general  or  right  way  of  doing  this  -  each  game  system 
requires a unique setting.  Important decisions have to be made by a developer  in  terms of 
fuzzy membership functions and weight of individual fuzzy rules.  

 

Moreover,  some  kind  of  representation  of  what  is  happening  and  why  units  take  their 
decisions in the way they do is needed. Many games with great AI fail to entertain because 
the  player  cannot  figure  out  what  exactly  affects  the  units  and  the  game  becomes  rather 
frustrating  (Black  and White  2  is  a  good  example  of  this).  We  will  discuss  both  how  the 
current state of an entity is visualised and where the borderline between hints for the player 
and revealing the whole game logic is. 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 41  
 

5.1. Types of Inner State Variables
 
The implementation version of Alien Farm after chapter 4 had a 2D world with some objects 
in it and agents which were able to do various tasks like gathering and breeding. Each agent 
took  the  same  time  to  gather  a  resource,  produced  the  same  amount  of  clones,  had  the 
same movement speed etc. The  reason  for  implementing  the  inner state was  to make  the 
way units performed given actions different and individual to each agent in order to make the 
game more  interesting and more difficult  to play. The CAgentInnerSensorEngine class was 
created  to deal with  fuzzy  logic and calculate happiness and activity each  loop. Two basic 
inner state variables were  introduced: happiness and activity. They both reflect on what an 
alien has been doing over the last year (in terms of the game time). 
 
Happiness 
Happiness level changes based on what task an agent is given to do compared to what job it 
prefers. It also depends on how much room there is in colony’s houses and how much food 
there is in store. 
The  emotion  affects  gathering  speed,  amount  of  clones  an  alien  is  willing  to  make  and 
amount of days it will need to do so. This means that player needs to choose right units for a 
certain type of job – otherwise their work will not be as effective as it could be. 
Also, the amount of food agent needs is affected. 
Finally,  if an agent  is  in  the age when  it should die, being above a certain happiness  level 
can prolong its life until the happiness drops. 
 
Activity 
Activity represents how tired or active an alien is. The activity level drops when an agent is 
working or moving  from one place  to another. Movement speed  is affected – a unit moves 
slower when  it  is  tired. This means  that  if  player  doesn’t make  the aliens  rest  during  their 
work,  it will  take much more  time  for  them to drop  resources  to  the silo. Activity  recharges 
when a unit is doing nothing. 
Activity also affects the amount of food an alien needs, by a higher amount than happiness 
does. This brings us back to the concept of making your units rest – player will need much 
less food in store if he doesn’t let the activity of units drop down too much. 
Please  refer  to Appendix P  to see  the overview  tables of how  the  inner state  is calculated 
and how it affects an agent. 

5.2. Evaluating the Current Inner State
 
As  it  was mentioned  above,  fuzzy  logic  was  used  to  calculate  the  happiness  and  activity 
levels. The important point of fuzzifying is that all  fuzzy terms (e.g. sad, normal, and happy 
for  happiness)  have  values  which  are  calculated  at  the  same  time.  Their  degrees  of 
membership can have values between 0 and 1 but  the sum of  their values can be greater 
than 1. The overall inner state level consists of degrees of membership to the fuzzy sets. 
 

5.2.1. Happiness Fuzzy Sets 
 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 42  
 

As Appendix O shows, happiness level is calculated based on agent’s current job, number of 
houses and amount of stored food. Happiness has three fuzzy sets: sad, normal and happy. 
They depend on three factors; therefore membership to the fuzzy sets needs to be calculated 
three times. These are the steps taken to calculate membership to each of the ‘happy’ fuzzy 
set: 
1. Calculate  the  individual  degrees  of  membership  based  on  current  job,  houses  and 
food: 
double jobWeight = FuzzyTrapezoid(jobXval,0.6,0.8,1,1.1);
double housingWeight;
if (aliensPerHouse == 1){

housingWeight = 1;
} else {
 housingWeight = 0;
}
double foodStoreWeight = FuzzyGrade(foodPerAlien,40,50);

Example 5-1 – calculation of individual degrees of membership for a degree of happiness 

The  jobXval  value  is  calculated  in a different  function  (Appendix Q) and  is based on 
agent’s current task, preferred job and time spent doing a job. The value is greater than 
0.3  if  the  two match and  increases with  time.  It  is  smaller  than 0.3  if  they  don’t  and 
decreases when agent continues  its work  (Figure 5-1). This makes agents normal or 
happy if they do their preferred job. The time doing a job can be a value between 0 and 
50  weeks.  The  value  constraints  have  been  established  so  that  the  happiness 
calculation is controllable. If the amount of weeks could be any number, there would be 
no way of establishing scale for happiness. 

 
Figure 5-1 - calculation of the jobXval value 

 
Appendix  R  shows  the  membership  functions  of  the  individual  factors.  The  fuzzy 
trapezoid and fuzzy grade function are based on [D. M. Bourg and G. Seeman, 2004, 
p. 194-197]. The result of each is a value between 0 and 1.  
 

2. Weight  the  results  in order  to get  the  final membership  to a  fuzzy  set,  based on  the 
table shown in Appendix P: 
happyDeg = 0.5*jobWeight+0.25*housingWeight+0.25*foodStoreWeight;

Example 5-2 – calculating the resulting happiness degree 
The equation  in Example 5-2 ensures that even though the happy degree consists of 
three factors, its value will stay between 0 and 1.  

 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 43  
 

The other two fuzzy sets (normal and sad) are calculated in a similar way. Appendix Q shows 
full bodies of the fuzzification functions. 
 

5.2.2. Activity Fuzzy Sets 
 
The activity  consists of  three  fuzzy sets: active, moderate and  lazy. Similarly  to happiness 
fuzzy sets,  their values are calculated as a weighted average of  fuzzified values based on 
factors age and movement  time. The movement  time can have a value between 0 and 50, 
similarly  to  the  time  spent  in  a  job  (discussed  in  5.2.1.  above).  Appendix  Q  shows  the 
membership functions. 
 
During  the  game  play,  the  happiness  tends  to  change  in  levels,  i.e.  the movement  of  the 
happiness  bar  is  not  smooth.  This  is  because  trapezoids  were  used  to  calculate  the 
happiness. On the other hand, the activity tends to drop down smoothly when a unit moves. 
Appendix R shows the difference  in activity membership functions –  their shape  is gradual, 
therefore the value goes down and up smoothly. 

5.3. Impact of the Inner State
 
After  the  Inner  Sensor  class  fuzzifies  the  activity  and  happiness,  other  functions  in  other 
agent’s classes use the values to adjust the agent’s behaviour. 
 

5.3.1. Motion Speed 
 
The motion is speed is calculated by the agent’s Motion Engine. In primary implementations 
the motion speed was fixed. Later, an algorithm was added so that the speed varies based 
on the activity level. To adjust the motion speed, one activity value is needed instead of three 
membership degree values. The value is then used in an equation for calculating speed. The 
Inner Sensor engine is able to return activity weight, i.e. a number between -1 and 1 based 
on the three activity fuzzy sets. Appendix S shows how the value is calculated. The algorithm 
is based on the defuzzification principle discussed in section 2.4.3. However, outcome of this 
algorithm is not an exact number needed for calculating motion speed. Instead the value is 
normalised between -1 and 1 so that the function can be reused in different places. 
Example  5-3  shows how  the motion  speed  can  be  calculated  using  a  defuzzified  value  of 
activity. The speed can have a value from the range <0.6;1.2>. 

double temp = m_pAgent->GetInnerSensorEngine()->GetActivityWeight();
m_fSpeed = 0.9 + temp*0.3;

Example 5-3 – using the activity weight to calculate motion speed 
 
Furthermore, an agent can get to the ‘crazy’ state which means that the movement speed is 
higher but the obstacle avoidance is less effective. This happens if agent is sad but has high 
activity level. Fuzzy rule with the AND axiom [D. M. Bourg and G. Seeman, 2004, p. 200] is 
used to test whether this behaviour should be triggered. 
 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 44  
 

5.3.2. Work Effectiveness 
 
The  Behaviour  Engine  is  responsible  for  processing  a  current  task.  It  queries  the  Inner 
Sensor engine about the current happiness in order to adjust the farming and mining speed. 
Similarly to how the Motion Engine calculates the speed, Behaviour engine uses happiness 
weight  to  determine  the  gathering  speed.  Based  on  the  way  fuzzification  works  (section 
5.2.1.) an agent gathers faster if it likes the job it does and if it works for a longer time. On the 
other hand, doing unpreferred job type slows down the gathering speed. 
 
There are two parameters which are affected by the defuzzified happiness when it comes to 
breeding: a number of clones agent is going to produce and the amount of days needed to 
do  so. Both are  calculated when  the breeding  task  is given  to an agent and don’t  change 
during breeding. However, happiness level still drops or goes up (based on if the agent likes 
the  task or not) which affects  the  two breeding parameters  if  the  task  is given  to an agent 
again. This means that if a player identifies agents which like to breed, giving them this task 
again and again will speed up the population growth. 
 

5.3.3. Amount of Food Needed 
 
The  amount  of  food  agent  needs  per  week  depends  both  on  happiness  and  activity. 
Therefore, both weights are considered. Example 5-4 shows the calculation of the combined 
weight. 

double activity = m_pInnerSensorEngine->GetActivityWeight();
double happiness = m_pInnerSensorEngine->GetHapinessWeight();
double temp = - 0.4*happiness - 0.6*activity;//-(0.4*activity) +
0.6*happiness;
m_iFoodPerWeek = ceil((2 + (temp*1)));

Example 5-4 – calculating the amount of food needed each week 
 

5.3.4. Life Length 
 
As  it  was  mentioned  in  section  4.5  above,  the  death  time  depends  on  agent’s  age  and 
current amount of food in store. After the Inner Sensor engine was implemented, additional 
rule could be applied to the death time which keeps a unit alive  if  it  is happy. If other rules 
determine that the agent should die, the happiness scale is tested: 

if (m_pInnerSensorEngine->GetHapinessScale() < 0.6)
Example 5-5 – testing the happiness scale 

The happiness scale can have values between 0 and 1. The defuzzification principle  is  the 
same  as  with  the  happiness  weight  (Appendix  S),  however  the  values  are  of  a  different 
range. This is simply to make the condition more understandable. 

 
 
 
 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 45  
 

5.4. Representation of the Inner States
 
The  inner  state  of  an  agent  has  a  major  impact  on  its  behaviour.  Therefore,  it  is  very 
important  to  let  the player  know about  the current  state, preferably  in more  than one way. 
Alien Farm units change their speech and sounds according to their happiness and have little 
state bars shown next to them when they are selected. 
 

5.4.1. State Bars 
 
Figure  5-2  shows  the  unit’s  happiness  (green)  and  activity  (red)  state  bars  when  the 
happiness is moderate and activity high. The state bars are updated each frame to reflect the 
current state. Similarly to calculating if conditions are met for an agent to die (section 5.3.4), 
calculation of  the bars’  length uses happiness and activity scales  (i.e. numbers  from range 
<0;1>) 

 
Figure 5-2 – agent’s state bars and speech bubble 

 

5.4.2. Speech 
 
Figure 5-2 shows the agent’s speech bubble as well. During the earlier implementation, the 
text  was  used  for  reporting  what  task  agent  was  given  or  what  task  it  was  performing. 
Sentences  like  ‘I am going  to gather some grain’ or  ‘I am going  to produce 3 clones  in 90 
days”  were  used.  The  sentences  were  stored  in  a  2D  array  and  referenced  according  to 
integer value of the current task and the task seed (implemented for making the text vary for 
the same task type). The value was obtained by converting the task’s name of enumeration 
type into integer.  
In  the  latest  implementation  version,  the  speech  changes  according  to  agent’s  happiness. 
Another  dimension was  added  to  the  speech  array which  represents  the  happiness  level. 
The algorithm which selects the right sentence looks both at the current task and happiness 
level  and  forwards  an  appropriate  message  to  agent’s  speech  bubble  which  displays  it. 
Please refer to Appendix T to read more about the mechanism of initiating the speech array 
and displaying the right sentence. 
 
There is a ‘shout’ feature implemented in the agent which is triggered when a different than 
usual message  needs  to  be  displayed  in  the  speech  bubble.  This  is  used when  an  agent 
wants to directly respond to the player’s interaction with. For example, when an agent is sent 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 46  
 

to gather grain but then it discovers the farm is already occupied by someone else, its state 
is set to idle. However, rather than displaying a normal idle message it informs the player that 
the  farm  is occupied. Such a message  is displayed both of a unt  is selected or unselected 
until  the  agent  is  given  a  different  task  or  is  selected  again.  Also,  the  bubble  disappears 
automatically after couple of seconds if the agent is not selected till then. 
 

5.4.3. Sound 
 
In strategy games, units usually play a sound when they are selected or given a task. Alien 
Farm  implements  the  same  feature,  however  the  sounds  were  selected  so  that  user  can 
identify when an agent  is  irritated (sad). Normally agent  is able  to play  three sounds which 
are selected randomly. Another set of sounds is used when the happiness scale drops below 
0.3. (i.e. an agent is sad). 

5.5. Testing and Evaluation
 
The  following  tests  were  done  during  the  implementation  process.  A  number  of  iterations 
were  used  to  produce  the  final  version  of  the  current  system  and  a  number  of  minor 
adjustments were done during this process. 
 
First,  the  membership  degrees  of  all  fuzzy  sets  were  hard-coded  into  the  Inner  Sensor 
Engine to test the inner state representation. All possible actions were given to an agent for 
each of the degrees in order to test if the text in the Speech bubble is displayed correctly and 
whether the state bars have a correct length. 
 
When  it was clear  that  the  inner state  is  represented appropriately,  the hard-coded values 
from  the  Inner Sensor Engine were  taken off  and  replaced by  correct  numbers  during  the 
game play. 
 
Debug  information was displayed by  the game  interface  for each selected alien,  listing  the 
values of fuzzy sets membership degrees and of factors which affect them, including weeks 
spent  working,  preferred  job,  weeks  spent  in  movement,  etc.  A  number  of  games  were 
played and  the debugging  information was compared  to what was happening  in  the game. 
This way, the reactions of the inner state could be compared to the game play in real-time.  
 
Once  it was sure  that  the  inner state changes correctly,  the  focus was moved on what  the 
inner state affects – movement speed, gathering speed, etc. These values were also a part 
of the debug information. The effect of happiness and activity on various behavioural factors 
was changed a number of  times until  the  results were satisfactory and  the game play was 
smooth, but not too easy. 
 
The debug information was hidden after the testing was completed but can still be turned on 
by altering the agent’s code in case that further adjustments or additions will need to be done 
in the future. 
 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 47  
 

5.5.1. Inner States and the Colony Information Panel 
 
The Colony  Information panel at  the bottom of  the  interface displays  the overall happiness 
and activity (apart from other information). 
Testing overal happiness value: all agents were doing what  their preference was  therefore 
there were all 100% happy. The average happiness was 100%.  
In a different situation, one agent out of 3 was not doing the right job and its happiness went 
down to 0% while the happiness of others was 100%.The expected and displayed average 
was 66%. 
This was done with 3 and 6 agents. 
The same applies for testing the overall activity. 

5.6. Conclusion
 
Implementing the inner state into agents made them behave differently from each other and 
react on  tasks  they were given based on  their  individual preferences. This made the game 
play much more  interesting and managing  the colony harder. The main  reason behind  this 
was  to address  the current problem with almost all  strategy games – units do what player 
makes them to but do not display any kind of impact on them. 
 
The inner state consists of two variables: happiness and activity. Both have three fuzzy sets 
associated  with  them.  The  fuzzification  process  takes  place  in  the  agent’s  Inner  Sensor 
Engine. The engine  is able  to provide defuzzified values of happiness and activity  to other 
classes  like  the Motion  or  the  Behaviour  engines.  They  use  the  values  in  order  to  adjust 
agent’s behaviour. 
 
The shapes of fuzzy membership functions have a great impact on the resulting values and 
need to be chosen carefully. Although fuzzy logic is relatively easy to implement, it takes a lot 
of  time  to  modify  both  the  fuzzification  and  defuzzification  processes  in  order  to  get  a 
playable game and interesting behaviour. 
 
In the next chapter, we will have a look at how Alien Farm was completed and how players 
reacted on the unstable behaviour of the units. 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 48  
 

 

6. Completing a Strategy Game
 

 

Once all the functionality is in place, there is time to make something out of it. Players want a 
variation first of all - they really want to play a new unique game when they click on the ‘New 
game’ button. The chapter will provide information of how a random map is constructed and 
what constraints are there when doing so. 

 

The most important aspect of each game is winning and getting rewards for what you do. No 
one  will  play  a  game  unless  there  is  a  sense  of  achievement  and  clear  objectives  are 
specified. Alien Farm has a main goal of the game but also gives the player rewards in forms 
of god powers when they achieve something non compulsory along the way. 

 

Testing  a  game  before  its  release  is  also  inevitable.  A  developer  knows  what  to  do  and 
understands  the game completely, but how will  other people  react  to  the environment and 
will they be able to find everything they need? The final sections of the chapter will report on 
testing the game by other people and will list the final adjustments which needed to be done 
in order to complete the artefact. 

 

 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 49  
 

6.1. Random Map Creation
 
As  it  was  mentioned  in  section  3.7.2.,  the  obstacle  avoidance  algorithm  has  a  few  flaws 
including agents not being able  to avoid walls of objects and obstacles of other  than radial 
shape. Therefore, these constraints needed to be incorporated in the algorithm for creation of 
maps.  
 
When  a  game  starts,  the CTerrain  creates  terrain  objects  (rocks,  swamps  and  trees)  and 
crystals.  These  have  a  texture  which  reminds  of  a  circular  shape  and  are  understood  as 
circles (they have a centre and diameter). Figure 6-1 shows how the algorithm which places 
new objects works. First  a  random position  from  ranges <-2000;  2000>  for X and <-1500; 
1500> for Y and diameter (from a certain range individual to an object type) is chosen. Than 
arrays of existing objects are iterated through and the newly created object parameters are 
tested to make sure the object will be placed on a free space, similarly to the test performed 
when player attempts to build a building (section 4.1.). 

 
Figure 6-1 algorithm for creating a random object 

 
However, while in the case of building the equation of circle is used (since only a point, i.e. 
mouse  location needs  to be  tested against), here both objects are compared based on  the 
bounding circles collision detection. Example 6-1. shows the algorithm which compares one 
object  to  another.  If  the  function  returns  true  for  any  of  existing  objects,  a  new  random 
position is chosen and the process repeats until a free space for the new object is found. The 
advantage of choosing another random position rather than just moving an object sideways 
is that there is less chance that the objects will be next to each other and the map looks more 
random. 
 

HitTestBothSpaceAround(int x_, int y_, int w_, int extraSpace_){
 bool hit = false;
 //------------- calcuate real distance of 2 centres:
 float deltaX = abs(((x_) - (m_fWorldX)));
 float deltaY = abs(((y_) - (m_fWorldY)));
 //--- calculate distance when touching, add extra space to each
radius:
 float distance = sqrt(deltaX*deltaX + deltaY*deltaY);
 float sumDiam = (w_/2+extraSpace_) + (m_fw/2+extraSpace_);
 //-------------- compare:
 if (distance < sumDiam){
 hit = true;
 }
 return hit;
}

Example 6-1 - hit test of object with an object 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 50  
 

Three units are placed on a fixed location so that they are concentrated around the centre of 
the map. Therefore, when  terrain objects and crystals are being created  the algorithm also 
checks they are not inside a square of size 120x50 with its middle in the centre of the map: 

if (newPositionFree && abs(x)-(r/20) > 60 && abs(y)-(r/2) > 50){
 ... // create an object
}

Example 6-2 - test against a free space in the middle of the map 
 
The above described implementation of random map creation was very satisfactory since it 
was able to create maps where agents were able to avoid obstacles mostly effectively. Each 
map  is  completely  new  which  creates  interesing  environments.  Appendix  U  shows  10 
examples of randomly created maps. 

6.2. Rewards to the Player
 
Important part of a game play  is not only  trying  to  reach  the main goal but also  to  receive 
rewards as you progress. Therefore God Powers were added to the game to give player an 
advantage  if  he  accomplishes  a  side  objective.  The objectives  are  listed  in  the Objectives 
panel at the bottom of the interface. The following is a list of God Powers: 
 

God Power  Condition  Effect 

Silo  Have 15 aliens  Builds a silo for free 

Energy boost  Accumulate  (different  from 
gather) 500 crystals 

All  units  have  a  maximum 
activity for 30 weeks 

Happiness boost  Build 40 houses  All  units  are  30%  more 
happy for 20 weeks 

 
The following additions were done to the CStatePlayClass in order to make the god powers 
work,: 
1. a Boolean array which  flags powers already won –  this ensures  that a power  is not 
activated twice 

2. allHappyCount and allActiveCount float variables which are first set to 0. When a God 
Power  is  used  they  are  set  to  20  and  30 weeks.  Afterwards,  the  counts  decrease 
each week and the Happiness and Energy boosts work until the value of these floats 
is 0 again. 

 
Also, the CPlayInterface class has a record of unlocked powers, i.e. powers which were won. 
This ensures that when a game is saved, the record of available powers is saved as well and 
loaded later on. 

6.3. The Win and Lose States
 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 51  
 

The most  important  part  of  any  game  is winning.  In  Alien  Farm  you  can win  by  having  a 
population of 30 and keeping the overall happiness of aliens higher  than 70%. This means 
player has to keep expanding the colony (have more aliens being born than dying), distribute 
the tasks so that agents do their preferred jobs, build enough houses and have enough food 
in store to keep them happy. 
 
The  CStatePlay  class  tests  whether  these  two  conditions  are  met  each  frame.  If  so,  the 
game is paused and a dialogue about winning the game is displayed. Player can start a new 
game or exit. Similarly, the class also tests whether all agents are dead. If this is the case, a 
dialogue about losing the game is displayed and player can restart or exit. 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 52  
 

6.4. Testing and Evaluation
 

6.4.1. The Game Play Length 
 
A target was to make the game play longer than 20 minutes. At least 5 games were played 
and the following factors mostly affecting the game length were identified: 

• speed of breeding 
• number of clones agent produces 
• target population  

These  factors  were  adjusted  in  order  to  increase  the  game  play  until  the  results  were 
satisfactory. 
 

6.4.2. Game Play and Interface 
 
Evaluation  results  in  the  following  sections  are  based  on  5  other  players  testing  the  final 
game  implementation.  The  age  of  the  game  testers was  between  16  and  25  years.  They 
spend between 4-50 hours a week playing games, mostly  first person shooters,  strategies 
and simulations. They were instructed to play the game between 5-10 times and then fill in a 
questionnaire where they could rate individual features, game AI and the interface. Also, they 
were able to comment on various aspects of the game. Please refer to Appendix V where the 
individual questionnaires are presented. 
 
The  tutorial  usefulness  scored  somewhere  in  the  middle  –  the  interface  was  described 
sufficiently,  however,  important  bits  like  where  to  build  buildings  and  why  units  die  were 
missing.  The  players  generally  knew what  to  do  in  the  game  provided  that  they  read  the 
tutorial slides. There was one tester who was not sure what to do - according to his words he 
didn’t see the tutorial at all. 
 
The stability of  the game was rated well, however  testers who used the save/load  features 
reported that the game would crash after a while when a scenario was loaded. The solution 
of this problem is described in section 6.5.2.  
 

6.4.3. Agents’ AI 
 
The path  finding was  rated generally well  –  there were only a  few occasions when agents 
would wander around  trying  to  find  their way. They didn’t bump  into obstacles most of  the 
time. 
 
The  behaviour  of  units  (gathering  speed,  breeding,  sounds  and  speech)  was  rated  of 
moderate  diversity.  This  result  is  satisfactory,  however  better  score  was  expected.  The 
testers considered the diversity good because  it made the game more  interesting, but  they 
complained about inability to plan their actions (the amount of new clones differed, when the 
obstacle avoidance failed it was difficult to get a unit to a farm which resulted in loosing food). 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 53  
 

Also, it was sometimes difficult to figure out the job preference of an agent. This problem was 
not addressed as the point of the game is to try and find out what the aliens want. 
 
The general  impression of  the game seems  to be good and a number of  testers  said  that 
they  liked  the  diversity  in  behaviour  of  units.  Section  6.5.  lists  improvements  which  were 
done based on the questionnaires in order to make Alien Farm a more enjoyable experience. 
 

6.4.4. Hardware Requirements 
 
The game was created on a PC with the following specifications: AMD Phenom II 2.80 GHz, 
3GB RAM, NVidia GeForce 7600 GS. It was tested by the developer on a laptop with AMD 
Turion 64 800 Mhz processor, 1GB of RAM and ATI Mobility Radeon X700 graphics card.  
The laptop ran the game well so its specifications were listed in the ReadMe file as minimal 
hardware  requirements.  However,  one  of  the  testers  with  a  stronger  PC  reported  that  he 
could not play  the game because  it was  too slow. Another person  reported  that  the game 
used approximately 50% of 3GHz Athlon X2 CPU. 
The main reason which slows the game down is the Update function of an agent where all 
agent engines do  their work each  loop. The CPU requirement goes up with  the amount of 
units.  Further  tests would  need  to  be  done  in  order  to  specify  the  hardware  requirements 
more  precisely.  Also,  the  obstacle  avoidance  algorithms  could  be made more  efficient  by 
filtering the array of tested objects, but the time constraints didn’t allow for this. 

6.5. Minor additions and Improvements
 

6.5.1. Tutorial 
 
Since  the  testers  said  that  they  could  not  understand  why  some  things  were  happening, 
additional information was added to the tutorial slides. The list of additions is the following: 
1. inform about building  restrictions  - objects cannot be built  close  together and  farms 
have to be built on swamps 

2. inform the player that the aliens need to eat every week, therefore food needs to be 
collected all the time 

3. explain that the number of clones and number of days needed to multiply vary based 
on an alien’s current happiness 

4. explain what the state bars are for 
5. let the player know how activity affects the movement 

 

6.5.2. Crashing Problem with a Loaded Game 
All  the  testers  complained about  the game crashing after  a  few minutes when  the  loading 
function  was  used.  By  investigating  the  problem,  it  was  found  out  that  the  XML  tree  was 
missing inevitable information: it stored the number of agents but it didn’t store the amount of 
live  agents.  The  loading  algorithm  therefore  set  the  amount  of  live  agents  equal  to  the 
amount of all. This was causing an array-out-of-bounds exception when a dead agent was 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 54  
 

removed  after  a  while  of  displaying  its  grave.  The  problem  was  fixed  by  decreasing  the 
number of live units by one for each agent which was flagged as dead. 
Another flaw of the loading process caused an agent to pass its action’s target array id as the 
minimum integer value. This caused a run-time error when the agent was  freeing  its  target 
resource (the agent was dead already). The exact reason of this problem could not be found. 
However, an extra IF statement was added to the CTerrain’s method which returns a building 
based on its array position - if the position is smaller than zero, the method returns the first 
building in the array (being one of the crystals since they are always constructed first). When 
a dead agent tries to free the building where the array position is smaller than zero, it means 
that  it  didn’t work with  this building anyway  (the position would be greater  than 0  if  it  did). 
When it sends a request to the 1st building about stopping working there, the algorithm first 
checks whether agent works there already and proceeds only if this is true. Since the method 
will never return true in this case, the solution of this problem does not affect the building or 
other agents anyway. 
 

6.5.3. Making of an Installation File 
 
When  the  game  was  first  tested  on  a  different  PC,  it  wouldn’t  run  because  of  missing 
OpenGL  libraries  it  uses.  This was  solved  by making  an  installation  file which  installs  the 
game  on  a  location  selected  by  the  user  and  also  copies  necessary  libraries  into  the 
Windows directory. If the libraries already exist, the setup programme asks the user what to 
do. The libraries are not uninstalled with the game. 
Install Maker 1.2. was used  to create  the setup  file.  Install Maker  is a  freeware created by 
Clickteam in 1999.  
 

6.5.4. The Game Speed 
 
Usually, different machines have different CPU speed which means calculations are done in 
different times. Most of all, this affects movement speed of objects. The way this problem is 
be overcome is by measuring delta  time between programme frames and using a constant 
delta time in movement calculations, for example when a certain number  is being added to 
object’s X position each frame. 
Even  though  the  CTimer  class  was  used  for  measuring  the  delta  time  and  the  float  dt 
variable was used  in calculating agent’s speed,  the result was that on different machines  it 
travelled at a different speed. The reason for this could not be found. 
To deal with this problem an integer global variable GameTimeSpeed was used. The CGame 
class still uses delta time to calculate the game speed. However, the GameTimeSpeed value 
is  calculated only  by  the CGame class  and  is  than picked up by  other  classes  to  perform 
calculations. 

g_iGameTimeSpeed = 100*dt;
Example 6-3 - calculating the game speed 

 
This also means that the Update function of all classes doesn’t need to have the extra delta 
time  parameter.  Instead,  classes  use  a  global  time  speed  which  makes  creation  of  new 
classes faster. 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 55  
 

6.6. Conclusion
 
This chapter described how Alien Farm was completed as a strategy game. A map creation 
algorithm  was  developed,  following  the  obstacle  avoidance  constraints  (having  circular 
objects, avoiding objects to be close together). 
Player  is given  rewards  in  form of God Powers  for completing side objectives. This makes 
the  game  more  interesting  because  there  is  more  than  one  target  to  achieve.  The  God 
Powers  give  advantages  to  the  player  like  being  able  to  build  a  free  silo  and  raising  the 
energy and happiness  level of agents  for a certain  time. The main  target of  the game is  to 
have  a  certain  population  and  overall  happiness  level.  The  objective  was  adjusted  during 
alpha testing in order to optimise the average game length. 
After the implementation was finished, five people tested the game and filled in an evaluation 
questionnaire.  Alien  Farm  scored  generally well,  although  there were  some problems with 
the  information provided and  the  save/load  feature. All  these problems were addressed  to 
deliver a final improved game. 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 56  
 

 

7. Conclusion and Future Work
 

 

 

 

 

 

 

 

 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 57  
 

The  project  consisted  of  research  and  experimentation  with  the  currently  used  games  AI 
techniques including obstacle avoidance in a continuous environment, finite-state machines, 
task-oriented behaviour, task processing and fuzzy logic.  

The project artefact is a 2D strategy game called Alien Farm. Units in the game are able to 
collect  resources  and  breed.  To  move  they  use  an  obstacle  avoidance  algorithm  for 
continuous  environments  based  on  Bourg’s  and  Seeman’s  work  (2004).  The  algorithm  is 
mostly  able  to  deal  with  single  radial  obstacles  which  put  restrictions  into  the  creation  of 
maps for the game. The units are finite-state machines which have three basic states:  idle, 
moving towards and performing. They use a number of engines which process various tasks, 
most importantly the Behaviour and the Motion engines. 

Units have an individualised inner state which reflects their recent actions and whether they 
liked  them  or  not.  The  inner  state  consists  of  happiness  and  activity  and  affects  various 
aspects of the behaviour, including work effectiveness and the movement speed. Fuzzy logic 
was  used  to  evaluate  the  inner  state  and  to  adjust  the  attributes  of  units.  The  result  is 
individualised behaviour which makes a difference in game play compared to other strategy 
games. Player needs to monitor happiness and activity of the units in order to win the game. 
Right  units  need  to  be  picked  up  for  certain  types  of  jobs,  otherwise  their  work  is  not 
effective. 

A  number  of  people  tested  the  game  and  said  they  found  the  individualised  behaviour 
interesting but harder to control. The project proved the point that making units behave more 
like humans is a positive addition to a game. Further adjustments and additions which could 
be added to Alien Farm would surely make it a popular commercial game. 

Additional features could include more types of structures and resources which would create 
more  tasks  for  the aliens  to do.  Instead of displaying  the speech bubbles, voices could be 
recorded  and  played  to  make  the  game  look  more  professional.  Also,  there  is  space  for 
adding extra game features like able to ‘play’ with the aliens in order to raise their happiness 
for a certain amount of time. This feature was in fact planned to be implemented but the time 
constraints didn’t allow for it. 

Probably  the most  interesting  addition would  be  to  implement  a  colony  of NPC  units  or  a 
multi-player mode playable over the network. In both cases, it would be interesting to create 
units which  like  to  go  to war  and  are  very  efficient when  fighting  in  comparison  to  others. 
However,  they would probably have  to have a disadvantage  like slow movement or higher 
consummation of food in order to balance the game. 

Another  point  which  this  work made  is  that  fuzzy  logic  is  very  good  for  evaluation  of  the 
current situation since it helps to split classification of the input from calculation of the output. 
This is very useful in an open-ended project like this since adding additional parameters and 
behaviour is made easier. 

Various  parts  of  the  Alien  Farm  code  could  be  re-used  for  other  projects.  This  includes 
especially  the Behaviour engine which  is  independent  from the classes outside the Agent’s 
boundary. Also, the Inner Sensors engine provides useful fuzzy logic functions and methods 
able to pre-defuzzify values for usage by other classes. 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 58  
 

Another  useful  class  is  the XmlHandler which  is  an  extension  of  TinyXML,  a  set  of  open-
source  libraries  for handling xml documents.  [TinyXML]. The Handler class provides useful 
functions  for  work  with  xml  tree  nodes,  is  independent  from  other  project  classes  and 
provided as a singleton. 

This project was useful to the author for two reasons: firstly a broad research into games AI 
needed  to  be  undertaken  in  order  to  deliver  the  project  artefact.  Secondly,  project 
management  and  software  development  techniques  like  creating  a  project  plan  and  using 
iterations  of  testing  and  implementation  had  to  be  used.  This  provided  a  solid  ground  for 
future development work. The project did not go well all the time - some features needed to 
be taken off the plan so that the final artefact was delivered as a complete packaged solution 
and  on  time.  However,  the  main  features,  most  importantly  the  inner  states,  were 
implemented successfully and all project aims and objectives have been satisfied. 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 59  
 

 

References
 

 

 

 

 

 

 

 

 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 60  
 

AI Depot: http://ai-depot.com/articles/artificial-intelligence-in-games/ 
 
AI Game Dev page A: aigamedev.com/site/best-of-2007 
 
AI Game Dev page B: aigamedev.com/reviews/top-ai-games 
 
Bourg D.M., Seeman G., 2004. AI for Game Developers. 1st edition. O’Reilly Media Inc. 
 
Blobs in Games: simblob.blogspot.com/2005/12/black-and-white-2-ai.html 
 
DaniWeb: http://www.daniweb.com/forums/thread68587.html 
 
Gamasutra page A: www.gamasutra.com/php-bin/news_index.php?story=16798 
 
GameAI page A: www.gameai.com/polls/061703_081503.html 
GameAI page B: http://www.gameai.com/polls/010701_020501.html 
GameAI page C: http://www.gameai.com/polls/100101_110901.html 
 
Game Dev: www.gamedev.net/community/forums/topic.asp?topic_id=441493 
 
Game FAQs: http://www.gamefaqs.com/computer/doswin/data/11255.html 
 
GameZone: www.gamezone.com/news/06_07_02_04_18PM.htm 
 
Gaming Today: http://news.filefront.com/half-life-2-episode-2-release-date-confirmed- 
october-9/ 
 
Ikeda Kenji’s web site: http://www-b2.is.tokushima-u.ac.jp/~ikeda/suuri/dijkstra/ 
      Dijkstra.shtml 
 
Laird J.E., Lent M., 2001. Human-Level AI’s Killer Application. AI Magazine, 22: 15-25 
 
Lee J.R., Williams A.B., 2004. Behaviour Development through Task Oriented 
      Discourse. Computer Animation and Virtual Worlds, 15: 327–337 
 
Levy S., 1993. Artificial Life: The Quest for a New Creation. Penguin 
Liu B., Choo H., Lok S., Bona S., Lee S. C., Poon F. P., Tan H., 1994. Finding the 
      Shortest Route Using Cases, Knowledge, and Dijkstra’s Algorithm. National 
      University of Singapore. IEEE Intelligent Systems, October ‘94, p. 7-11 
 
MMu partnership server: 
http://www.partnership.mmu.ac.uk/cme/Geometry/CoordGeom/Circles/CirclesEqns/Eqns
Circles.html 

 
Planet Crap: www.planetcrap.com/topics/288/ 
 
Ringdahl O., 2003. Path Tracking and Obstacle Avoidance Algorithms for Autonomous 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 61  
 

       Forest Machines. T. Hellström: Umeå University. 
 
Shack News web site: http://www.shacknews.com/onearticle.x/55781 
 
Slashdot forum: ask.slashdot.org/article.pl?sid=06/05/09/2251228 
 
Spronck P., Ponsen M., Sprinkhuizen-Kuyper I., Postma E., 2006. Adaptive game AI with 
dynamic scripting. Machine Learning, 63: 217–248 

 
Thomason L, 2006. Tiny XML for C++. http://www.grinninglizard.com 
 
TinyXML: http://www.grinninglizard.com/tinyxmldocs/index.html 
 
University of Georgia web site: http://www.cs.uga.edu/~potter/kbs/AOM-Quick-Start.ppt 
 
W3schools: http://www.w3schools.com/Xml/xml_usedfor.asp 
 
Wikipedia Games AI: http://en.wikipedia.org/wiki/Game_artificial_intelligence  
Wikipedia Dijkstra: http://en.wikipedia.org/wiki/Dijkstra's_algorithm 
Wikipedia Halo 3: http://en.wikipedia.org/wiki/Halo_3 
Wikipedia WOW: http://en.wikipedia.org/wiki/World_of_Warcraft#Ongoing_gameplay 
Wikipedia XML: http://en.wikipedia.org/wiki/XML 
 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 62  
 

 

Appendices
 

 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 63  
 

Appendix A:
Games that brought innovations into AI

 
Diablo 
Blizzard  released  the  first  Diablo  in  1997.  Focus  of  AI  developers  included  areas  like 
response  time  of  NPC  reactions,  path  finding  and  knowledge  acquisition.  Diablo 
implemented dynamical interaction with player and extended virtual world [J. E. Laird and M. 
Lent, 2001]. 
 
Black and White 
The game was released by Lionhead Studios in 2001. It  implements machine learning (you 
have a creature pet which can be trained) and A-life (evolving world of NPCs) [AI Game Dev, 
page B].  Also,  the way  opponents  attack  your  base  is  very  realistic  and  forces  players  to 
change their strategy throughout a game [Blobs in Games]. 
 
Age of Mythology 
Age of Mythology was developed by Ensemble Studios  and published by Microsoft Game 
Studios in 2002. Apart from being a great strategy with opponents which adapt to your game, 
the developers added scripting which makes the AI even more interesting. You can use the 
XS  (Expert System)  language  in order  to script behaviour of your opponents  [University of 
Georgia web site] which is perceived as a great advantage in today’s games [GameAI page 
B]. 
The  game won  a  number  of  awards  including  IGN PC’s  ‘Best  Strategy Game  award’  and 
‘Best of Show Real-Time Strategy’ from Wargamer [Game Zone]. 
 
World of Warcraft 
This game was released by Blizzard Entertainment  in 2004 and became a hit considerably 
fast. Most  of  the  game  play  is  based  on  receiving  quests  from NPCs  that  usually  involve 
killing  a  number  of  monsters  or  finding  items  [Wikipedia  WOW].  Behaviour  of  NPCs  is 
realistic in a way that opponents tend to chase you if you start running away, but only if they 
have enough health. This makes them seem as if they were afraid to die but still wanted to 
kill a player if possible. Also, enemies create invading groups if they are close together and 
you attack one of them. 
According  to  Shack  News  [Shack  News  web  site],  US  Army  is  considering  using  MMO 
games like World of Warcraft for training purposes. 
 
Half-Life 2 Episode 2 
The  game  released  by  Valve  in  2007  [Gaming  Today]  received  ‘Best  AI  in  a Mainstream 
Game’  reward  from Gamasutra,  a web  site which  specializes  in AI  in  the  same  year.  The 
main  improvements  to AI were  highly  interactive NPCs with  scripted  behaviour  as well  as 
high level of coordination between player’s enemies [Gamasutra page A] 
 
Halo 3 
Bungie  released  Halo  3  in  2007  exclusively  for  Xbox  360  [Wikipedia  Halo  3].  The  game 
players voted  for  this game  to have  the  ‘Most popular AI  in a game’  in 2007. The  reasons 
were interesting group behaviour (group of NPCs behaves differently when its members die) 
and AI’s awareness of combat mechanics [Gamasutra page A]. 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 64  
 

Appendix B:
A tile-based vs. continuous environment

 
Ti le-based 
 
A  tile-based  environment  consists  usually  of  squares  with  constant  size  which  cover  the 
whole  map.  Position  of  an  object  is  usually  represented  as  row  and  column  numbers. 
Movement is done in a way that one tile represents one step and an object can move in one 
of  the  8  directions:  north,  north  east,  east,  south  east,  south,  south west,  west  and  north 
west.  Figure  AP1  shows  the  implementation  of  such  terrain  type  in  a  game.  The  triangle 
represents current position of a NPC and darkened areas stand for obstacles.  
 

 
Figure AP1: Tile-based environment 

 
Continuous 
 
A continuous environment  is not divided  into  tiles and position of objects  is  represented by 
real  numbers  relative  to  a  point  on  a map  (usually  one  of  the map  corers  or  its  middle). 
Movement is much more realistic in this type of environment because an object can go in any 
direction. Figure AP2 shows how a continuous environment can be used in a game. 
 

 
Figure AP2: Continuous environment 

 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 65  
 

Appendix C:
Entity in a continuous environment and its movement

 
 

 
Figure AP3: Forces applied to a vehicle. 

[D. M. Bourg and G. Seeman, 2004, p. 17] 
 
There are two types of forces applied to an entity. The thrust force makes it move and can be 
positive  (forward  movement)  or  negative  (backward  movement).  Alternatively,  additional 
thrust force can be applied in the front of the entity to make it move backwards. The steering 
forces  make  the  entity  turn  right  or  left.  The  turning  radius  is  a  function  of  speed  which 
means  that  the  turning  angle  gets  bigger when  the  speed  is  higher.  [D. M.  Bourg  and G. 
Seeman, 2004] 

 
 
 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 66  
 

Appendix D:
Pure pursuit method for obstacle avoidance

[ O. Ringdahl, 2003] 

Figure AP4 shows the geometrical description of movement in the pure pursuit algorithm. It 
consists of the following steps: 

1. Det ermine cur rent l ocat ion of t he vehicl e
2. Find a car rot point - point where t he vehicl e shoul d get
3. Transf orm vehicl e’s and car rot point ’s l ocat ion int o vehicl e’s l ocal coordinat es

We can use t he f ol l owing equat ion ment ioned by D.M. Bourg and G. Seeman (2004):

x = X cos θ + Y sin θ
y = -X sin θ + Y cos θ

  Where x and y are object’s local coordinates, X an Y the global coordinates and θ is 
the object’s orientation relative to the global coordinate system. 

4. Cal cul at e curvat ure c which is inverse of t he radius of pat h a vehicl e shoul d f ol l ow
5. Det ermine st eer ing angl e

 
Figure AP4 - Pure Pursuit method  

[O. Ringdahl, 2003] 
This will produce a realistically-looking movement where vehicle  tends to steer  towards the 
target during the movement rather than turning towards a target and than going forward. 

 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 67  
 

Appendix E:
Various methods used for obstacle avoidance

Waypoints

Points placed on the terrain, which identify free space between obstacles [D. M. Bourg and G.

Seeman, 2004]. They can be understood as nodes of a tree where two connected nodes don’t

have an obstacle between them (Figure AP5). The waypoints’ connections can represent roads

where each connection has its weight. Weight can mean both distance and applicability of a

route [Bing Liu et. al, 1994] - e.g. major terrain type of a road.

This approach has the following advantages:

a. Movement is easy to manage and alter

b. Testing is generally straight forward

Disadvantages of this approach are: 
a. A developer has to plot the nodes offline each time the environment changes

b. Positions of waypoints as well as their connections must be stored in the memory

 
Figure AP5 - Waypoints placed between obstacles 

To plan a route, an agent needs to find the shortest way from waypoint A to waypoint B. The

A* algorithm [D. M. Bourg and G. Seeman, 2004] or Dijkstra’s algorithm [Bing Liu et. al,

1994] can be used to efficiently search tree of waypoints for the shortest route.

The A* algorithm is usually used in tiled environments where each tile has its score. The

score is a sum of tile’s movement cost (from a starting tile) and a heuristic value. The

heuristic value is estimated as a movement cost of a straight path from a current tile towards

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 68  
 

the target (i.e. we don’t take obstacles between the tiles into account). The A* algorithm is

able to find the least expensive path through the environment by examining tiles in a way to

the target.

The Dijkstra’s algorithm is a variation of the A* algorithm and works in a similar way using a

tree of connected nodes where each connection has a weight. The algorithm uses a Distance

list, a Previous vertex list and a Visited list to iterate through the nodes and find the shortest

path [K. Ikeda’s web site, Wikipedia Dijkstra].

Vector field histogram (VFH)

VFH consists of 3 levels of data [O. Ringdahl, 2003]:

a. 2D histogram grid that stores information about where obstacles are in certain radius

around a vehicle. The grid is divided into N sectors and is updated via vehicle’s

sensors each time it moves. The sensors are able to detect range and size of obstacles

around the vehicle.

b. 1D polar histogram - the 2D histogram grid is mapped onto a graph so that each sector

has its polar obstacle density value. This value represents how many obstacles there

are in a sector. A smoothing function can be applied in order to make neighbour

sectors less attractive as well.

c. Output of the VFH algorithm - steering angle. The angle is determined by choosing

one of the sectors with low obstacle density from the polar histogram. The winner

sector is the one closest to the object’s ideal direction (i.e. direction toward the target)

Using this approach an AI entity is able to plan the path around obstacles in a certain radius 
around the vehicle. However, the algorithm requires a lot of computations and therefore it is 
not suitable for agent systems with high amount of entities [O. Ringdahl, 2003]. 
 
Potential function

The function calculates the potential energy of any object and determines attraction and

repulsion forces between two entities [D. M. Bourg and G. Seeman, 2004]. Computer-

controlled entity moves towards or from an object according to the calculated force.

The advantage of this approach is that it can be used in many ways including chasing,

evading, swarming and obstacle avoidance. Also, if parameters are set properly the movement

appears to be very realistic.

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 69  
 

The main disadvantage is that the function can be quite CPU-intensive, especially for a large

number of game units.

Tracing algorithm

The algorithm makes an AI entity follow straight lines or use any other path finding algorithm

until an obstacle is found. The AI entity tries to go around an obstacle by following its walls

until an original path can be followed again. This approach is usually used in tiled indoor

environments but can be adapted also to continuous ones by using line-tracing and point

content functions [D. M. Bourg and G. Seeman, 2004].

The advantage of this approach is that no path data needs to be stored and computations are

quite straight forward. However, the movement is not as much realistic as when using the

algorithms mentioned above.

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 70  
 

Appendix F:
VSRC Task Discourse Architecture

[J.R. Lee and A.B. Williams, 2004] 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 71  
 

Appendix G:
UML diagram of the artefact

 
 
 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 72  
 

 
 
 
 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 73  
 

 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 74  
 

Appendix H:
World axes in Alien Farm and the mini map

The view is centred in the beginning of the game. The axes emerge from this point. The mini 
map displays all world objects in a magnified view: the white dots are the aliens, the brown 
squares  are  hills,  the  green  circles  swamps,  red  squares  are  trees,  the  purples  squares 
represent crystals and the gray squares are buildings. 
 

 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 75  
 

Appendix I:
Adjusting the texture based on unit’s rotation, implementation 1

 

   
 
Simply rotating an agent model 
would result in awkward display 
 

 
The result of applying one four 
different textures based on rotation 
 

            X = 0                              X = 
1 
Y = 1 
 
 
 
 
 
 
 
Y = 0 

 
 
 
The image on the left is the original texture used for 
an agent – each of the four corners corresponds to 
a  certain  rotation.  The  texture  coordinates  are 
calculated  based on  the  current  rotation  each  loop 
frame: 

//------------set texture according to the rotation:
if (m_fRotation >= 45 && m_fRotation<225){
 textureAreaTopR_x = 0.5;
} else {
 textureAreaTopR_x = 1;
}
if (m_fRotation >= 135 && m_fRotation<315){
 textureAreaTopR_y = 0.5;
} else {
 textureAreaTopR_y = 1;
}

//-------------- prepare texture coordinates for rendering:
m_fX1=textureAreaTopR_x;
m_fY1=textureAreaTopR_y;
m_fX3=textureAreaTopR_x-0.5;
m_fY3=textureAreaTopR_y-0.5;

//-------------- use the texture coordinates when doing rendering:
glRotatef(m_fRotation,0,0,1);
glBegin(GL_POLYGON);
 glTexCoord2f(m_fX1, m_fY1);

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 76  
 

 glVertex2f(0.5f, 0.5f);
 glTexCoord2f(m_fX3, m_fY1);
 glVertex2f(-0.5f, 0.5f);
 glTexCoord2f(m_fX3, m_fY3);
 glVertex2f(-0.5f, -0.5f);
 glTexCoord2f(m_fX1, m_fY3);
 glVertex2f(0.5f, -0.5f);
glEnd();

 
 
Note  that  since  we  do  not  change  the  rotation  itself  when  the  texture  coordinates  are 
calculated,  the  individual  four  images  need  to  be  pre-rotated  so  that  they  are  displayed 
appropriately when applied in real-time. 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 77  
 

Appendix J:
Steering towards a target when it is right at the back of an agent

The problem with the algorithm used for navigation towards a target occurs when a target is 
right at the back of an agent and the resulting steering force is 0. To overcome this problem, 
the following test is done after initial calculation of the steering force: 
 

//----- create a normalised vector which stores agent’s absolute
 orientation:
CVector3d orient = GetOrientationVector();

//-------- test if the steering force was calculated as very low:
if (fabs(m_vMovingForce.m_fx) < 3){
 bool turn180 = false;
 /*
 The GetAbsoluteWorldSideHoriz() and GetAbsoluteWorldSideVert()
 functions return enumeration values such as eWSnorth,
 eWSsoutEast, etc.
 */
 eWorldSide horizSide = m_pAgent->GetSensorEngine()-
>GetAbsoluteWorldSideHoriz(x,y);
 eWorldSide vertSide = m_pAgent->GetSensorEngine()-
>GetAbsoluteWorldSideVert(x,y);

 //-------- horizontal test:
 if ((horizSide == eWSwest && orient.m_fx > 0) || (horizSide ==
eWSeast && orient.m_fx < 0)){
 turn180 = true;
 //-------- vertical test:
 } else if ((vertSide == eWSnorth && orient.m_fy < 0) || (vertSide ==
eWSsouth && orient.m_fy > 0)){
 turn180 = true;
 }

//---------- if target is at the back, initiate rapid turn:
if (turn180){

 m_vForceSteering.m_fx += 10;
 }
}

Appendix K:
Testing against collision with other agents in the Idle state

To solve the problem of two and more agents ending their movement on top of each other, a 
simple algorithm was added to the agent’s behaviour which checks against all agents which 
have a higher array position. If collision occurs agent chooses a random location close to its 
original position. 
 

for (int i=m_pAgent->GetArrayPos()+1;i<m_pAgent->GetWorld()-
>GetNumAgents();i++){

 //---- check if other agent is around the same location:
 if (m_pAgent->GetSensorEngine()->LocationInRange(m_pAgent-
>GetWorld()->GetAgent(i)->GetWorldX(),m_pAgent->GetWorld()->GetAgent(i)-
>GetWorldY(),20)){

 //----- create a new random position:

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 78  
 

 int actionX = m_pAgent->GetMemoryEngine()-
>GetRandomDirection(60);
 int actionY = m_pAgent->GetMemoryEngine()-
>GetRandomDirection(50);

 //-----move towards the position (add a GoTo action as a
 new task for self:
 m_pAgent->GetMemoryEngine()->AddAction(m_pAgent->GetWorldX() +
actionX,m_pAgent->GetWorldY() + actionY,eActionGoTo,-1,true);
 }
}

To  create  a  new  random  location,  both  X  and  Y  coordinates  are  adjusted  using  the 
GetRandomDirection (distanceFromOriginal) method: 
 

float CAgentMemoryEngine::GetRandomDirection(float maxDistance_){

int range=maxDistance_*2;
 //--------- range <- maxDistance; maxDistance > [DaniWeb]:
 float xDiff = ((range*rand()/(RAND_MAX+1.0)))- maxDistance_;

 //---------- limit agent's own space <-40;40>:
 if (xDiff > - 40 && xDiff < 40){
 //----- use recursion if number within this space:
 xDiff = GetRandomDirection(maxDistance_);
 }
 return xDiff;
}

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 79  
 

Appendix L:
Extension to the obstacle avoidance algorithm

The  following  algorithm  is  a  part  of  the  obstacle  avoidance  algorithm  in  the 
CAgentMotionEngine  class.  It  deals with  the  problem where  agent would  circle  around  an 
obstacle when target of its task in inside it 
 

void CAgentMotionEngine::AvoidObstacle(CObject*obstacle_){
 ... //obstacle avoidance algorithm

//---- test if should stop in front of obstacle if target inside it:

eActionType curActionType = m_pAgent->GetMemoryEngine()-
>GetCurActionType();
 bool stopWhenNear = true;
 if (obstacle_->GetObjectType() == CObject::eTypeBuilding){
 if (curActionType == eActionGatherCrystals){
 if (m_pAgent->GetTerrain()->GetBuilding(obstacle_-
>GetArrayPos())->GetBuildingType() != CBuilding::eBuildingCrystals){
 stopWhenNear = false;
 }
 } else if (curActionType == eActionUnload){
 if (m_pAgent->GetTerrain()->GetBuilding(obstacle_-
>GetArrayPos())->GetBuildingType() != CBuilding::eBuildingSilo){
 stopWhenNear = false;
 }
 }
 }

if (stopWhenNear){
 int curActionX = m_pAgent->GetMemoryEngine()->GetCurActionX();
 int curActionY = m_pAgent->GetMemoryEngine()->GetCurActionY();

 if (obstacle_->HitTest(curActionX,curActionY) && obstacle_-
>HitTestBothSpaceAround(m_pAgent->GetWorldX(),m_pAgent-
>GetWorldY(),50,0)){
 m_pAgent->GetBehaviourEngine()-
>SetState(eAgentPerforming);
 m_pAgent->SetForcedStop(true);
 }
 }
}

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 80  
 

Appendix M:
Graphical representation of the gathering algorithm

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 81  
 

Appendix N:
Improved texture for an agent – additional colours and graves

The  following  algorithm  shows  how  the  texture  coordinates  are  being  calculated  after 
implementation of three distinct colour of agent: 

//------------set texture according to the rotation:
if (m_fRotation >= 45 && m_fRotation<225){
 textureAreaTopR_x = 0.25;
} else {
 textureAreaTopR_x = 0.5;
}

if (m_fRotation >= 135 && m_fRotation<315){
 textureAreaTopR_y = 0.75;
} else {
 textureAreaTopR_y = 1;
}
//--------- adjust the texture coordinates based on agent’s colourId:
if (m_iColorId == 3){
 textureAreaTopR_x += 0.5;
}
if (m_iColorId > 1){
 textureAreaTopR_y -= 0.5;
}

//-------------- prepare texture coordinates for rendering:
m_fX1=textureAreaTopR_x;
m_fY1=textureAreaTopR_y;
m_fX3=textureAreaTopR_x-0.25;
m_fY3=textureAreaTopR_y-0.25;

 

The image on the left shows the texture for this 
implementation. The  individual  images are pre-
rotated for the reasons explained in Appendix I. 
 

Death 
The  top  right set of  images are graves. No matter what colour an agent had,  their original 
texture  coordinates need  to be  converted  to  the ones matching  the  top  right  corner of  the 
texture. This is done in the Die() function using the following algorithm: 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 82  
 

 
if (m_iColorId < 3){
 m_fX1 += 0.5;
 m_fX3 += 0.5;
 }
if (m_iColorId > 1){
 m_fY1 += 0.5;
 m_fY3 += 0.5;
}

 
As  we  can  see  the  grave  image  is  chosen  according  to  agent’s  current  orientation  (the 
original alien texture is chosen according to the rotation and when agent is dead, the texture 
coordinates are increased by a set amount: 0.5.). However, the grave image doesn’t depend 
on agent’s original colour. 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 83  
 

Appendix O:
An example of XML structure for a saved game

<?xml version="1.0" ?>
<planet>
 <gameInfo gatheredGrain="174" gatheredCrystals="0" timeElapsed="986"
spell1won="0" spell2won="0" spell3won="0" allHappy="0" allActive="0"
allHappyCount="0" allActiveCount="0" spell1active="0" spell2active="0"
spell3active="0" />

 <terrain rocks="15" swamps="10" trees="5">
 <tree x="-1699" y="1380" w="195" shapeSeed="2" />
 <tree x="-1299" y="922" w="205" shapeSeed="2" />
 <tree x="1362" y="361" w="241" shapeSeed="1" />
 <tree x="-1242" y="333" w="243" shapeSeed="1" />
 <tree x="-1136" y="1103" w="242" shapeSeed="1" />
 <rock x="70" y="272" w="187" shapeSeed="2" />
 <rock x="1531" y="-1108" w="295" shapeSeed="2" />
 <rock x="293" y="1247" w="290" shapeSeed="1" />
 <rock x="958" y="830" w="311" shapeSeed="2" />
 <rock x="435" y="743" w="222" shapeSeed="2" />
 <rock x="1801" y="1000" w="184" shapeSeed="2" />
 <rock x="-1801" y="1099" w="277" shapeSeed="3" />
 <rock x="-1464" y="-253" w="249" shapeSeed="3" />
 <rock x="-1533" y="708" w="244" shapeSeed="2" />
 <rock x="-1067" y="-155" w="199" shapeSeed="2" />
 <rock x="-497" y="1439" w="332" shapeSeed="3" />
 <rock x="-125" y="584" w="330" shapeSeed="1" />
 <rock x="918" y="518" w="221" shapeSeed="2" />
 <rock x="-1426" y="-688" w="274" shapeSeed="1" />
 <rock x="123" y="-975" w="193" shapeSeed="2" />
 <swamp x="485" y="354" w="256" shapeSeed="3" />
 <swamp x="1696" y="375" w="290" shapeSeed="1" />
 <swamp x="-1725" y="411" w="297" shapeSeed="1" />
 <swamp x="-1765" y="-657" w="290" shapeSeed="1" />
 <swamp x="699" y="1116" w="293" shapeSeed="1" />
 <swamp x="651" y="-503" w="223" shapeSeed="3" />
 <swamp x="965" y="-1001" w="293" shapeSeed="1" />
 <swamp x="-892" y="825" w="243" shapeSeed="1" />
 <swamp x="-680" y="-944" w="225" shapeSeed="3" />
 <swamp x="759" y="-1249" w="273" shapeSeed="2" />
 </terrain>

 <buildings farms="1" crystals="7" houses="1" silos="1">
 <crystals x="-273" y="306" />
 <crystals x="-1686" y="-974" />
 <crystals x="1330" y="826" />

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 84  
 

 <crystals x="-1928" y="-446" />
 <crystals x="401" y="-359" />
 <crystals x="-255" y="-608" />
 <crystals x="1042" y="-288" />
 <silo x="-24" y="148" />
 <house x="388" y="-59" />
 <farm x="488" y="233" />
 </buildings>

 <units units="3">
 <Feena x="238" y="85" rotation="32" dead="0" lifeTime="141"
nextNumChildren="0" carriageAmount="0" movementActivity="0" daysInJob="0"
favAction="1" colourId="2">
 <action type="0" targetsArrayId="0" x="0" y="0" />
 <lastJob type="0" targetsArrayId="-842150451" x="-842150451" y="-
842150451" />
 </Feena>
 <Tolen x="-241" y="227" rotation="141" dead="0" lifeTime="141"
nextNumChildren="0" carriageAmount="6" movementActivity="7" daysInJob="45"
favAction="2" colourId="2">
 <action type="3" targetsArrayId="0" x="-288" y="285" />
 <lastJob type="3" targetsArrayId="0" x="-288" y="285" />
 </Tolen>
 <Tiree x="20" y="-30" rotation="0" dead="0" lifeTime="141"
nextNumChildren="0" carriageAmount="0" movementActivity="0" daysInJob="0"
favAction="2" colourId="2">
 <action type="0" targetsArrayId="0" x="0" y="0" />
 <lastJob type="0" targetsArrayId="-842150451" x="-842150451" y="-
842150451" />
 </Tiree>
 </units>

</planet>

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 85  
 

Appendix P:
Calculation and the use of the inner state

Inner state variables 
  Affected by  Value range of  i tem 

from column 2 

- if doing a preferred job (affecting 50% of 
happiness) 

Gather grain, mine, 
breed, do nothing 

- number of room in houses (affecting 
25% of happiness) 

<1;N>, where 
N=number of aliens 

Happiness 
 

- amount of food in store (affecting 25% of 
happiness) 

<0;MAX_INT> 

- movement time (affecting 60% of 
activity) 

<0;50> weeks Activity 

-  age (affecting 40% of activity)  <0;4> years 
 

Affected Attr ibutes 
  Value range of an 

attr ibute 
Affected by 

Farming speed   <0.018;0.18>  - Happiness: the happier, the greater the 
gathering speed 

Mining speed  <0.002;0.02>  - Happiness: the happier, the greater the 
gathering speed 

Number of 
clones wants 

[2,4,6]  - Happiness: the happier, the more children 
wants 

Amount of 
days needed to 
clone 

<100;300>  - Happiness: the happier, the smaller the 
amount 

Movement 
speed 

<0.6;2>  - Activity: the lower activity the slower the 
motion 

- activity (by 60%): the more tired the more 
food required 

Units of food 
needed per 
week 

<1;3> 

- happiness (40%): the happier the less food 
required 

l i fe length in 
years 

<1;4>  - amount of food in store 
- happiness 
 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 86  
 

Appendix Q:
Fuzzification algorithms

//---------------------------------- HAPINESS
/* hapiness depends on:
- 50% on the job (based on personal job preferences),
- 25% on number of houses (compare # houses with population to get a
ratio R: population/numHouses*4)
 - if R <= 1 => good, aliens happy
 - if R > 1 => bad, getting depressed
 - limit : R = 3;
- 25% amount of food in store
*/

double CAgentInnerSensorEngine::GetHappyDeg(){
 double jobXval = GetJobFuzzyXvalue();
 double jobWeight = FuzzyTrapezoid(jobXval,0.6,0.8,1,1.1);
 int aliensPerHouse = m_pAgent->GetWorld()->GetAliensPerHouse();
 double housingWeight;
 if (aliensPerHouse == 1){
 housingWeight = 1;
 } else {
 housingWeight = 0;
 }
 double foodPerAlien = m_pAgent->GetWorld()->GetFoodPerAlien();
 double foodStoreWeight = FuzzyGrade(foodPerAlien,40,50);
 double happyDeg;
 happyDeg = 0.5*jobWeight + 0.25*housingWeight + 0.25*foodStoreWeight;
 //------------------ test if happiness spell was used:
 if (m_pAgent->GetWorld()->GetStateWrapper()->GetAllHappy()){
 happyDeg += 0.3;
 if (happyDeg > 1){
 happyDeg = 1;
 }
 }
 return happyDeg;
}

double CAgentInnerSensorEngine::GetNormalDeg(){
 double jobXval = GetJobFuzzyXvalue();
 double jobWeight = FuzzyTrapezoid(jobXval,0.2,0.4,0.6,0.8);
 int aliensPerHouse = m_pAgent->GetWorld()->GetAliensPerHouse();
 double housingWeight;
 if (aliensPerHouse == 2){
 housingWeight = 1;
 } else {
 housingWeight = 0;
 }
 double foodPerAlien = m_pAgent->GetWorld()->GetFoodPerAlien();
 double foodStoreWeight = FuzzyTrapezoid(foodPerAlien,20,30,40,50);
 double normalDeg = 0.5*jobWeight + 0.25*housingWeight +
0.25*foodStoreWeight;
 return normalDeg;

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 87  
 

}

double CAgentInnerSensorEngine::GetSadDeg(){
 double jobXval = GetJobFuzzyXvalue();
 double jobWeight = FuzzyTrapezoid(jobXval,-0.1,0,0.2,0.4);
 int aliensPerHouse = m_pAgent->GetWorld()->GetAliensPerHouse();
 double housingWeight;
 if (aliensPerHouse >= 3){
 housingWeight = 1;
 } else {
 housingWeight = 0;
 }
 double foodPerAlien = m_pAgent->GetWorld()->GetFoodPerAlien();
 double foodStoreWeight = FuzzyTrapezoid(foodPerAlien,-1,0,20,30);
 double sadDeg;
 sadDeg = 0.5*jobWeight + 0.25*housingWeight + 0.25*foodStoreWeight;
 //------------------ test if happiness spell was used:
 if (m_pAgent->GetWorld()->GetStateWrapper()->GetAllHappy()){
 sadDeg -= 0.3;
 if (sadDeg < 0){
 sadDeg = 0;
 }
 }
 return sadDeg;
}

double CAgentInnerSensorEngine::GetJobFuzzyXvalue(){
 double daysInJobPercent = m_pAgent->GetMemoryEngine()->
GetWeeksInJob()/m_pAgent->GetNumRememberedWeeks();
 eActionType curActionType = m_pAgent->GetMemoryEngine()->
GetCurJobType();
 eActionType prefActionType = m_pAgent->GetFavAction();
 double jobTemp;

/* cur job evaluation graph:

 sad normal happy
 ----\ /--------\ /-----------
 \ / \ /
 \ \
 / \ / \
 ----|--|--|-------|---|----------------
 0.2 0.3 0.4 0.6 0.8

 - 0.3 is a hasRightJobLimit, if does , value on X increases from
0.3, if not, it decreases from 0.3
 - action goTo or None, stay at the same level
 */
 if (curActionType == prefActionType){
 jobTemp = 0.3 + 0.7*daysInJobPercent;
 }

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 88  
 

 else if (curActionType == eActionNone || curActionType ==
eActionGoTo){
 Action lastJob = m_pAgent->GetMemoryEngine()->GetLastJob();
 if (lastJob.type == prefActionType){
 jobTemp = 0.3 + 0.7*daysInJobPercent;
 } else {
 jobTemp = 0.3 - 0.3*daysInJobPercent;
 }
 } else {
 jobTemp = 0.3 - 0.3*daysInJobPercent;
 }
 m_dLastJobTemp = jobTemp;
 // || curActionType == eActionNone || curActionType == eActionGoTo
 return jobTemp;
}
//-------------------------------- ACTIVITY
/*
 activity affected by
50% time spent in job - the time goes gradually down when agent is out of
job. The time is set to 0 when a new job.
50% motion time
 */
double CAgentInnerSensorEngine::GetActiveDeg(){
 double daysMoving = m_pAgent->GetBehaviourEngine()->
GetMovementActivity();
 double ageWeight = FuzzyTrapezoid(m_pAgent->GetAge(),-0.1,0,1,2);
 double movementWeight = FuzzyTrapezoid(daysMoving,-1,0,0,14);
 double activeDeg;
 //------------------ test if activity spell was used:
 if (m_pAgent->GetWorld()->GetStateWrapper()->GetAllActive()){
 activeDeg = 1;
 } else {
 activeDeg = 0.4*ageWeight + 0.6*movementWeight;
 }
 return activeDeg;
}
double CAgentInnerSensorEngine::GetModerateDeg(){
 double daysMoving = m_pAgent->GetBehaviourEngine()-
>GetMovementActivity();
 double movementWeight = FuzzyTrapezoid(daysMoving,0,14,14,35);;
 double ageWeight = FuzzyTrapezoid(m_pAgent->GetAge(),1,2,3,4);
 double activeDeg;
 activeDeg = 0.4*ageWeight + 0.6*movementWeight;
 return activeDeg;
}

double CAgentInnerSensorEngine::GetLazyDeg(){
 double daysMoving = m_pAgent->GetBehaviourEngine()-
>GetMovementActivity();
 double movementWeight = FuzzyGrade(daysMoving,14,35);
 double ageWeight = FuzzyGrade(m_pAgent->GetAge(),3,4);
 double activeDeg;
 //------------------ test if activity spell was used:

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 89  
 

 if (m_pAgent->GetWorld()->GetStateWrapper()->GetAllActive()){
 activeDeg = 0;
 } else {
 activeDeg = 0.4*ageWeight + 0.6*movementWeight;
 }
 return activeDeg;
}

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 90  
 

Appendix R:
Fuzzification membership functions

Happiness fuzzy sets 
Current job factor (normalised value between 0-1): 

 
Houses factor: 

 
Food factor: 

 
Activity fuzzy sets 
Age factor: 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 91  
 

 
 
Movement time factor (normalised value between 0 and 50 weeks): 

 
 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 92  
 

Appendix S:
Defuzzification of happiness and activity

 
/*
 GetActivityWeight()
 - represent overal activity by a number between -1 and 1
 - used when getting crisp fuzzy output for afffected functions
*/
double CAgentInnerSensorEngine::GetActivityWeight(){

 /* EXAMPLE: use fuzzy logic to calculate speed which can have values
<0.8;2>:
 middle of speed values = 1.4,
 therefore MODERATE has 1.4 weight, LAZY 0.8, ACTIVE 2,
 speedAddition = lazyDeg*0.8 + moderateDeg*1.4 + activeDeg*2

 => GENERALISED FUNCTION: determine weight of adding/removing from a
middle of possible values towards max/min
 1. calulate result TEMP if possible values were <-1;1>, with
middle 0.1
 2. transfer a number from this scale to needed scale, e.g.
<0.8,2> by finding the middle M of needed scale and value V from the
middle to both ends. Than multiply V by TEMP and
add it to M.
 */

 double lazyDeg = GetLazyDeg();
 double moderDeg = GetModerateDeg();
 double activeDeg = GetActiveDeg();
 double temp = lazyDeg*(-1) + moderDeg*0.1 + activeDeg*1;
 return temp;
}

/*
 GetActivityScale()
 - represent overal activity by a number between 0 and 1:
 - used mostly for the activity bar
*/
double CAgentInnerSensorEngine::GetActivityScale(){

double weight = GetActivityWeight(); //values = <-1;1>
 //------- now convert to <0;1>:
 double scale = (weight+1)/2;
 return scale;
}

double CAgentInnerSensorEngine::GetHapinessWeight(){
 double happyDeg = GetHappyDeg();
 double normalDeg = GetNormalDeg();
 double sadDeg = GetSadDeg();
 double temp = sadDeg*(-1) + normalDeg*0.1 + happyDeg*1;
 return temp;
}

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 93  
 

double CAgentInnerSensorEngine::GetHapinessScale(){
 double weight = GetHapinessWeight(); //values = <-1;1>
 //------- now convert to <0;1>:
 double scale = (weight+1)/2;
 return scale;
}

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 94  
 

Appendix T:
Creating speech

During  initiation  of  the  speech  array,  it  is  filled  with  sentences  of  the  String  type.  The 
sentences have place holders for numeric values denoted by ‘%d’ characters. For example, 
to initiate sentences for the breeding action, the following code was used: 

//--------------------- sad
m_sActionSpeech[int(eActionMultiply)][0][0] = "Another %d useless lives
will be created in %d days";
 m_sActionSpeech[int(eActionMultiply)][0][1] = "Do I have to clone
myself into %d waggans again?";
//--------------------- normal
m_sActionSpeech[int(eActionMultiply)][1][0] = "There will be %d more
waggans here in %d days";
 m_sActionSpeech[int(eActionMultiply)][1][1] = "I shall make %d clones
of me in %d days.";
//--------------------- happy
m_sActionSpeech[int(eActionMultiply)][2][0] = "I am looking forward to
see my %d new clones in %d days!!";
 m_sActionSpeech[int(eActionMultiply)][2][1] = "My %d new clones will
be definitelly perfect";

There are two things needed to be mentioned about the sentences: the first is that the place 
holders  for  integer  values  need  to  be  in  the  same  order  because  they  are  replaced  in  an 
algorithm  executed  later  on.  For  example,  in  the  0th  sentence  seed  (the  seed  is  the  3rd 
dimension  of  the  array)  the  number  of  clones  is  always  referenced  first,  followed  by  the 
number of remaining days. 
Secondly,  instead of  referencing  the 1st dimension of  the array (the one related  to  the  task 
type) by a hard-coded integer number, conversion to integer from enumeration task type was 
used.  This  ensures  that  if  the  enumeration  order  changes,  right  sentences  will  still  be 
displayed. 
 
When  an  agent  is  given  a  task  or  is  selected,  it  changes  its  speech  text.  The  function 
RandomizeSpeech is called. This function sets the sentence id (based on the current task), 
sentence happiness id and sentence seed to an appropriate number: 

void CAgentBehaviourEngine::RandomizeSpeech(bool firstTime_){
 eActionType type = m_pAgent->GetMemoryEngine()->
GetCurAction().type;
 m_iSentenceId = int(type);
 //----------------------- find out what happiness:
 /*
 evaluate happiness from scale <0;1> whee 0 = 100% sad:
 */
 double happiness;
 if (firstTime_){
 happiness = 0.5;
 } else {
 happiness = m_pAgent->GetInnerSensorEngine()->
GetHapinessScale();
 }

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 95  
 

 if (happiness < 0.3){
 //----- is sad:
 m_iSentenceHappinness = 0;
 } else if (happiness > 0.7){
 //------ is happy:
 m_iSentenceHappinness = 2;
 } else {
 //------ is normal:
 m_iSentenceHappinness = 1;
 }

 //---- choose a random sentence for a particular action: [DaniWeb]
 int range=2;
 m_iSentenceSeed = int(range*rand()/(RAND_MAX+1.0));
}

 
Finally,  the  Handle  Speech  method  fills  a  selected  sentence  with  an  appropriate  integer 
value and sends the text to the Speech bubble for displaying. The body of this function is too 
long to be fully listed here. The following code shows how an integer value is put into a string 
from the Speech array  if  the current  task  is breeding and the sentence seed is 0 (the case 
discussed above): 

int num1 = int(m_iNextNumOfChildren);
int num2 = ceil(m_fCarriageAmount);

//------- since the sprintf function only works with char* and prints
into a char[] variable, they need to be created first:
char outp[100] = "";
const char* sentence =
m_sActionSpeech[m_iSentenceId][m_iSentenceHappinness][m_iSentenceSeed].c_
str();

//------------- inserting the integers into the sentence:
sprintf(outp,sentence,num1,num2);
//--------- convert back to a string:
string output = outp;

//-------------- send to the speech bubble:
m_pAgent->GetSpeechBubble()->Say(output);

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 96  
 

Appendix U:
Random maps screenshots

 

 
 
Legend: 

 
The yellow square represents the part of map which is currently being viewed. 

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 97  
 

Appendix V:
Evaluation questionnaire answers

TESTER 1

ABOUT YOU

1. How many hours per week/month do you spend playing computer or console games (please fill in
one of the boxes)?

20 per week OR per month

2. Put a numbers 1-3 next to three of the listed game genres, where 1 means the one you play the
most:

3 First person shooter
(Max Payne, Battlefield 1943)

2 Strategy
(Warcraft, Age of Empires)
 2 RPG

(Diablo, Dungeons & Dragons)
1 MMOG (Lords of Everquest, World of

Warcraft)

2 Racing game
(Need for Speed, Top Gear)

1 Adventure (Zork, Escape from
Monkey Island)
 1 Action-adventure

(GTA, Prince of Persia)
3 Simulation

 (F22, Orbiter)
 1 Life simulation (Sims, Jurrasic

Park: Operation genesis)

GAME PLAY AND INTERFACE
Always tick only one box in the following questions. There are 5 possible answers in each question
and the first and last answer values are described above the tick boxes. You can ‘tick’ a box by putting
‘X’ inside it.

1. How much did you learn in the tutorial as opposed to the actual game play?

Most in the tutorial most during the game

 X

2. Rate stability of a game - did it crash?

 Unstable Stable

 X

3. How many times didn’t you know what to do with the interface (e.g. you couldn’t find a button or
information)?

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 98  
 

 I was confused all the time The interface was easy to understand

 X

4. How many times didn’t you know what to do in the game (e.g. how to make aliens happier, how to
build, etc)?

 I was confused all the time It was always clear what I needed to do

 X

PATH FINDING

1. How many times did an alien get to a target location in the way you would have expected (i.e. the
most effective way)?

 Almost never Most of the time

 X

2. How many times did an alien bump into an obstacle or went straight through it?

 Almost never Most of the time

 X

BEHAVIOUR OF ALIENS

1. How much did speech of aliens differ from each other?

 Not at all Very much

 X

2. How much did sounds of aliens differ from each other?

 Not at all Very much

 X

3. How much did a way aliens performed their task differ from each other (e.g. speed of gathering,
movement, number of days they needed to breed)?

 Not at all Very much

 X

4. In overall, do you consider the differences in behaviour to be good for the game play?

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 99  
 

Bad / disturbing Good

 X

 Explain why:

It is impossible to have an exact plan - e.g. alien changes its path, it takes
more time to get to a farm which means all aliens die...

5. How many times did aliens behave unexpectedly?

 Never Very often

 X

 Write more about any unexpected behaviour:

Sometimes when it bumped into an obstacle, it changes the direction by
180 degrees (not considering where the target was), then it bumped into
another obstacle and only after that found the right way

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 100  
 

TESTER 2

ABOUT YOU
3. How many hours per week/month do you spend playing computer or console games (please fill in

one of the boxes)?

20 per week OR per month

4. Put a numbers 1-3 next to three of the listed game genres, where 1 means the one you play the
most:

1 First person shooter
(Max Payne, Battlefield 1943)

3 Strategy
(Warcraft, Age of Empires)
 RPG

(Diablo, Dungeons & Dragons)
 MMOG (Lords of Everquest, World of

Warcraft)

 Racing game
(Need for Speed, Top Gear)

 Adventure (Zork, Escape from
Monkey Island)
 Action-adventure

(GTA, Prince of Persia)
 Simulation

 (F22, Orbiter)
 2 Life simulation (Sims, Jurrasic

Park: Operation genesis)

GAME PLAY AND INTERFACE
Always tick only one box in the following questions. There are 5 possible answers in each question
and the first and last answer values are described above the tick boxes. You can ‘tick’ a box by putting
‘X’ inside it.

5. How much did you learn in the tutorial as opposed to the actual game play?

Most in the tutorial most during the game

 x

6. Rate stability of a game - did it crash?

 Unstable Stable

 x

7. How many times didn’t you know what to do with the interface (e.g. you couldn’t find a button or
information)?

 I was confused all the time The interface was easy to understand

 x

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 101  
 

8. How many times didn’t you know what to do in the game (e.g. how to make aliens happier, how to
build, etc)?

 I was confused all the time It was always clear what I needed to do

x

PATH FINDING

3. How many times did an alien get to a target location in the way you would have expected (i.e. the
most effective way)?

 Almost never Most of the time

 x

4. How many times did an alien bump into an obstacle or went straight through it?

 Almost never Most of the time

x

BEHAVIOUR OF ALIENS

6. How much did speech of aliens differ from each other?

 Not at all Very much

 x

7. How much did sounds of aliens differ from each other?

 Not at all Very much

 x

8. How much did a way aliens performed their task differ from each other (e.g. speed of gathering,
movement, number of days they needed to breed)?

 Not at all Very much

 x

9. In overall, do you consider the differences in behaviour to be good for the game play?

Bad / disturbing Good

 x

 Explain why:

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 102  
 

It makes it more enjoyable. Though sometimes it appeared to be quite
random

10. How many times did aliens behave unexpectedly?

 Never Very often

 x

 Write more about any unexpected behaviour:

Sometimes they slowed down quite a lot when running around obstacles.

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 103  
 

TESTER 3

ABOUT YOU

5. How many hours per week/month do you spend playing computer or console games (please fill in
one of the boxes)?

4-5 per week OR per month

6. Put a numbers 1-3 next to three of the listed game genres, where 1 means the one you play the
most:

1 First person shooter
(Max Payne, Battlefield 1943)

2 Strategy
(Warcraft, Age of Empires)
 RPG

(Diablo, Dungeons & Dragons)
 MMOG (Lords of Everquest, World of

Warcraft)

 Racing game
(Need for Speed, Top Gear)

 Adventure (Zork, Escape from
Monkey Island)
 Action-adventure

(GTA, Prince of Persia)
3 Simulation

 (F22, Orbiter)
 Life simulation (Sims, Jurrasic

Park: Operation genesis)

GAME PLAY AND INTERFACE
Always tick only one box in the following questions. There are 5 possible answers in each question
and the first and last answer values are described above the tick boxes. You can ‘tick’ a box by putting
‘X’ inside it.

9. How much did you learn in the tutorial as opposed to the actual game play?

Most in the tutorial most during the game

 X

10. Rate stability of a game - did it crash?

 Unstable Stable

 X

11. How many times didn’t you know what to do with the interface (e.g. you couldn’t find a button or
information)?

 I was confused all the time The interface was easy to understand

 X

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 104  
 

12. How many times didn’t you know what to do in the game (e.g. how to make aliens happier, how to
build, etc)?

 I was confused all the time It was always clear what I needed to do

 X

PATH FINDING

5. How many times did an alien get to a target location in the way you would have expected (i.e. the
most effective way)?

 Almost never Most of the time

 X

6. How many times did an alien bump into an obstacle or went straight through it?

 Almost never Most of the time

X

BEHAVIOUR OF ALIENS

11. How much did speech of aliens differ from each other?

 Not at all Very much

 X

12. How much did sounds of aliens differ from each other?

 Not at all Very much

 X

13. How much did a way aliens performed their task differ from each other (e.g. speed of gathering,
movement, number of days they needed to breed)?

 Not at all Very much

 X

14. In overall, do you consider the differences in behaviour to be good for the game play?

Bad / disturbing Good

 X

 Explain why:

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 105  
 

good because it makes the game harder, bad because it made any planning
impossible

15. How many times did aliens behave unexpectedly?

 Never Very often

 X

 Write more about any unexpected behaviour:

numbers of new waggans when breeding, preference of their jobs

More comments:
Tutorial: I found out there how to control the game, there was everything there about that. On the other
hand I couldn’t find out where to build buildings (especially farms) which was not in the turorial and I
pretty much didn’t find it out even during the game :) - sometimes I could have two next to each other
so that they were touching, sometimes I could put maximum 1 farm on the green land. Also
sometimes it wrote that I couldn’t build houses and silos on a certain place and I have no idea why
and I don’t know if there is a connection between their life length, happiness and the food they have,
maybe I would figure out somehow after longer time but there were too many of them.

Stability of the game: when I saved it and then ran a saved position it always switched off after about a
minute. But when I started a new game it didn’t crash at all, the problems were caused by loading
saved games. Also bearing in mind the official hardware requirements it was needed quite a lot of
CPU power, it used approximately 50% of it (I have 3GHz Athlon X2)

Interface was well-arranged and well described in the tutorial, I didn;t have any problems with it (if I
don’t consider it is not working under a high resolution)
Path finding: they moved more or less straight, they avoided the buildings, walked only through farms,
they went slower across the green fields, overall they didn’t have problems with movement.

Behaviour: as opposed to other games (e.g. age of empires) the talking and sounds quite differed, it
was obvious that it repeats but as much often to look monotonous. the movement speed was more or
less the same, gathering speed as well (of one type, the gathering speed on a farm was quite higher
than close to a crystal), however the number of breeding days was in fact always different (in a certain
interval)

In terms of judging the differences, it made planning quite hard and sometimes it looked more like an
artificial chaos than artificial intelligence :) for example it often happened that a waggan said it would
make a number of clones and than there was a different number of them there (in the beginning the
problem was mainly that when this happened I had a problem to keep up with the food). But on the
other hand at least it was not too easy, in most of the strategy games it is enough to figure out one
strategy and just keep it up. The only problem was that in the beginning when I had three of them they
all wanted to go to one farm, or when some of them didn’t want to do anything. It would be easier if
there was a job preference shown after clicking on a unit so that you can find out what it would like to
do, otherwise I cannot figure it out, only after I give it a task.

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 106  
 

TESTER 4

ABOUT YOU

7. How many hours per week/month do you spend playing computer or console games (please fill in
one of the boxes)?

20 per week OR per month

8. Put a numbers 1-3 next to three of the listed game genres, where 1 means the one you play the
most:

3 First person shooter
(Max Payne, Battlefield 1943)

2 Strategy
(Warcraft, Age of Empires)
 RPG

(Diablo, Dungeons & Dragons)
1 MMOG (Lords of Everquest, World of

Warcraft)

 Racing game
(Need for Speed, Top Gear)

 Adventure (Zork, Escape from
Monkey Island)
 Action-adventure

(GTA, Prince of Persia)
 Simulation

 (F22, Orbiter)
 Life simulation (Sims, Jurrasic

Park: Operation genesis)

GAME PLAY AND INTERFACE
Always tick only one box in the following questions. There are 5 possible answers in each question
and the first and last answer values are described above the tick boxes. You can ‘tick’ a box by putting
‘X’ inside it.

13. How much did you learn in the tutorial as opposed to the actual game play?

Most in the tutorial most during the game

 X

14. Rate stability of a game - did it crash?

 Unstable Stable

 X

15. How many times didn’t you know what to do with the interface (e.g. you couldn’t find a button or
information)?

 I was confused all the time The interface was easy to understand

 X

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 107  
 

16. How many times didn’t you know what to do in the game (e.g. how to make aliens happier, how to
build, etc)?

 I was confused all the time It was always clear what I needed to do

 X

PATH FINDING

7. How many times did an alien get to a target location in the way you would have expected (i.e. the
most effective way)?

 Almost never Most of the time

 X

8. How many times did an alien bump into an obstacle or went straight through it?

 Almost never Most of the time

 X

BEHAVIOUR OF ALIENS

16. How much did speech of aliens differ from each other?

 Not at all Very much

 X

17. How much did sounds of aliens differ from each other?

 Not at all Very much

 X

18. How much did a way aliens performed their task differ from each other (e.g. speed of gathering,
movement, number of days they needed to breed)?

 Not at all Very much

 X

19. In overall, do you consider the differences in behaviour to be good for the game play?

Bad / disturbing Good

 X

 Explain why:

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 108  
 

because it is at least a bit more difficult to play, otherwise everything would
be the same...

20. How many times did aliens behave unexpectedly?

 Never Very often

X

 Write more about any unexpected behaviour:

I would allow for more time before aliens die because when I
played it for the first couple of times they all died in a while and I
had to start again.. and I read the whole tutorial but I couldn’t
figure out what to do with that.

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 109  
 

TESTER 5

ABOUT YOU

1. How many hours per week/month do you spend playing computer or console games (please fill in
one of the boxes)?

50 per week OR per month

2. Put a numbers 1-3 next to three of the listed game genres, where 1 means the one you play the
most:

2 First person shooter
(Max Payne, Battlefield 1943)

1 Strategy
(Warcraft, Age of Empires)
 3 RPG

(Diablo, Dungeons & Dragons)
3 MMOG (Lords of Everquest, World of

Warcraft)

2 Racing game
(Need for Speed, Top Gear)

2 Adventure (Zork, Escape from
Monkey Island)
 3 Action-adventure

(GTA, Prince of Persia)
1 Simulation

 (F22, Orbiter)
 3 Life simulation (Sims, Jurrasic Park:

Operation genesis)

GAME PLAY AND INTERFACE
Always tick only one box in the following questions. There are 5 possible answers in each question
and the first and last answer values are described above the tick boxes. You can ‘tick’ a box by putting
‘X’ inside it.

1. How much did you learn in the tutorial as opposed to the actual game play?

Most in the tutorial most during the game

 x

2. Rate stability of a game - did it crash?

 Unstable Stable

 x

3. How many times didn’t you know what to do with the interface (e.g. you couldn’t find a button or
information)?

 I was confused all the time The interface was easy to understand

 x

4. How many times didn’t you know what to do in the game (e.g. how to make aliens happier, how to
build, etc)?

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 110  
 

 I was confused all the time It was always clear what I needed to do

 x

PATH FINDING

1. How many times did an alien get to a target location in the way you would have expected (i.e. the
most effective way)?

 Almost never Most of the time

 x

2. How many times did an alien bump into an obstacle or went straight through it?

 Almost never Most of the time

x

BEHAVIOUR OF ALIENS

1. How much did speech of aliens differ from each other?

 Not at all Very much

 x

2. How much did sounds of aliens differ from each other?

 Not at all Very much

x

3. How much did a way aliens performed their task differ from each other (e.g. speed of gathering,
movement, number of days they needed to breed)?

 Not at all Very much

 x

4. In overall, do you consider the differences in behaviour to be good for the game play?

Bad / disturbing Good

 x

 Explain why:

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 111  
 

Because I can use them more effectively, they do more work !!!

5. How many times did aliens behave unexpectedly?

 Never Very often

 x

 Write more about any unexpected behaviour:

About 3 times an alien stopped moving and started blinking, once all 3 died
in the beginning after about 15 seconds.

They go slower through those grass fields, they should avoid them, it would
be more effective, the energies tab can’t be switched back to the buildings
menu. And it read my save and switched the game off and I couldn’t
continue the game.

Moving the map could work with mouse too and display population
number!!!!! otherwise a great idea, expand it !!! (: thanks for the game!

L. Pitonakova           Downloaded from www.lenkaspace.net 

Page | 112  
 

Appendix W:
The Project Poster

 

