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Abstract 
 

The paper provides an insight into procedural 
modelling techniques and uses. Procedural modelling 
is an alternative approach to modelling when high 
realism and fast real-time rendering of complex 
objects is desired. The paper first introduces common 
procedural modelling techniques including creation of 
fractals and L-systems. Discussion of various 
approaches to how the models can be created and how 
they are used by a number of games and software 
follows. 
 
 
1. Introduction 
 

Today’s modellers are searching for techniques 
which would automatically create natural or complex 
objects based on some formal definitions or sets of 
rules. The need for such techniques comes from current 
market demands for simple creation of models and fast 
real-time rendering. 

Procedural modelling is an alternative approach to 
standard modelling using software like 3D Max or 
Maya. Procedural models are more mathematical 
descriptions and formulas than meshes. The new 
modelling approach is a way of creating models 
without manipulating 3D meshes themselves. Various 
software tools exist which can read, interpret and 
visualise given initial primitives. Then they apply rules 
and use pseudo-random numbers to create complex 
objects. 

Software and games which use the procedural 
modelling technique are able to introduce new 
interesting features and detailed, realistic environments 
never seen before on screen.  
 
 
2. Procedural Modelling Techniques 
 

Procedural modelling uses mathematical models 
and abstract definitions of shapes rather than meshes 

created by usual modelling techniques. Procedural 
models are therefore easier to modify since only their 
formal definitions need to be changed. Most common 
mathematical structures used are fractals and L-
systems. 
 
2.1. Fractals 

A fractal is "a rough or fragmented geometric shape 
that can be split into parts, each of which is (at least 
approximately) a reduced-size copy of the whole” [1], 
i.e. a self-similar structure [2]. They are similar on any 
scale, therefore considered as “infinitely complex” [3]. 

A typical example of a fractal shape is Sierpinski 
triangle [4] which starts with a single triangle and 
splits infinitely (Figure 1).  

 
 

Figure1: Sierpinski triangle [4] 
 
Fractals can be found in 

nature (clouds, mountains, 
rivers, coastlines, etc. [5]), can 
be created using vector iteration 
programmes (usually to model 
real-life objects) [3] and are a part of manufactured 
objects (antennas, fractal drums for absorption of 
sounds, fibre optics [5]). 
 
2.2. L-systems 
 

L-systems or Lindenmayer systems are fractal-like 
self-similar structures grown from an initial state based 
on a set of production rules [6], usually represented by 
strings. Similarly to fractals, their structure is the same 
both on a large and small scale [2].  
 

L-systems are usually defined by the following 
components [6]: 
Alphabet: a finite set V of formal symbols, usually 
represented as letters of the alphabet (a,b,c, etc). 
Axiom: a string ω from the set V also denoted as V*. 
V* represents words such as aab, acbb, etc. 
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Productions: rules of mapping letters from V to V* 
denoted as 
 p: α --> ω 

If there is no rule defined for a letter α from the set V, 
it is mapped to itself and called a constant. 
An L-system is therefore a tuple which can be formerly 
represented as 
 G = {V,S, ω, P} 
where S is a set of constants [2]. 

 
There are a number of uses of L-systems, especially 

for growing artificial plants. The rules are applied 
iteratively to an initial string which can be interpreted 
graphically by a computer programme. Figure 2 shows 
an artificial plant grown using the following definition 
of an L-system [2]: 

variables: X F 
constants: + − 
start: X 
rules: (X → F-[[X]+X]+F[+FX]- 
  X), (F → FF) 
angle: 25° 

where F means "draw forward", - means "turn left 
25°", and + means "turn right 25°". 
 

 
Figure 2: artificial plant created as an L-system [2] 

 
Simpler grammar can be used to get the Fibonacci 

numbers where a number in the set is a sum of string’s 
letters in each iteration [2]: 

variables : A B 
constants : none 
start  : A 
rules  : (A → B), (B → AB) 

This L-system produces the following sequence of 
strings: 

n = 0 : A 

n = 1 : B 
n = 2 : AB 
n = 3 : BAB 
n = 4 : ABBAB 
n = 5 : BABABBAB 
n = 6 : ABBABBABABBAB 
n = 7 : BABABBABABBABBABABBAB 

The result obtained after 7 iterations is 1 1 2 3 5 8 13 
21. 

One can control growth of the string by simply 
altering the production rules. This provides great 
advantages as a modelling technique, since the 
graphical representation itself is done automatically by 
a software which uses the production grammar.  

The results of using L-systems show that graphics 
produced are very similar to natural objects, such as 
the plant mentioned above. Moreover, a number of 
variations can be created by simply randomizing a 
small part of the production rule or the initial string. 
 
 
3. Procedural Modelling of Urban Areas 
 

Estate areas, industrial parks or large cityscapes all 
appear both in modern movies and computer games. 
Both industries have a common need to create large 
amount of interesting structures that can be quickly 
adjusted and rendered. Building cities using current 3D 
modelling software like 3DS Max or Maya is difficult. 
They provide great tools for creating the most realistic 
meshes with good-looking textures. However, it is hard 
and very time-consuming to model large areas with 
diversity of object, since each mesh has to be made and 
manipulated with by hand. Therefore, an alternative 
approach needs to be taken where the modeller can 
specify parameters and common features of objects 
while the actual models are created automatically and 
with randomised diversity. 

CityEngine [7] is the leading tool on the software 
market [8] which makes city creation much faster. It is 
quite easy to learn to work with and it can generate city 
maps based on street shape patterns, grow buildings 
between the streets and provide other 3D creation tools 
as well as rendering engines with usable models. 

 
3.1. Creating Streets 
 

The first step in creating a city is to define suitable 
areas for streets and specify the city height map. To do 
so, CityEngine implements elevation, land/water and 
population density maps. These are all layers which 
help the street generation algorithms decide where and 
how to lay out the street junctions. These maps can be 
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based on real cities or created from scratch. Figure 3 
shows examples of such maps. 

 

 
Figure 3: Left column: Water, elevation and population density maps 

of an imaginary virtual city of 20 miles diameter. Right: One 
possible roadmap generated from this input data. [8, p. 302] 

 
The second step is to generate street networks. 

There is an interface dialogue where you can specify 
the area, density and shape of street network. A 
number of network patterns have been identified 
during the research in this field [8, 9]. CityEngine lets 
you choose one of the following for minor streets and 
major highways: rectangular raster (similar to New 
York), radial to centre (similar to Paris) and branching 
(with no superimposed pattern). Once all the 
parameters have been specified, the whole network is 
created by a simple click of a button. The streets have 
greater concentration in areas with high population 
density, avoid water while growing along coasts and 
snap to the terrain elevation (Figure 3). The creation 
process itself is based on L-systems and uses a fast 
trial-and-error method to provide streets shapes and 
connections.  
 
3.2. Creating Buildings 

 
After the streets have been generated, user can 

create structures between them. In City Engine, Each 
building stands on a lot. Lots are created automatically 
and can be subdivided to provide bases for extra 
buildings. 

The procedural approach to modelling proves itself 
useful again when actual models of buildings are 
created. Instead of building the meshes by hand, user 
can write a CGA (Computer Generated Architecture) 
script which specifies how to ‘grow’ a building from 
its initial lot. Each lot therefore needs to have a script 
associated with it. Shape grammars were initially 
introduced by architect Stiny in 1971 as a tool for 
designing and analysing architecture [10].  

CGA uses Shape trees in order to extract new 
geometry from the initial shape of a building lot. [11] 
Branches of a shape tree are created by applying one or 
more of the provided shape manipulation functions to a 
predecessor shape: scope transformation (scaling, 
rotation, translation), texture UV coordinates 
speciation, addition of geometry (e.g. attaching an 
imported model of a window, roof, etc.), extrusion, 
component split (which helps identify various parts of 
an object, e.g. front wall or roof) and subdivision split 
(which splits initial object into more, e.g. to create 
separate floors of a building). Complex buildings can 
be created by applying a pre-defined set of building 
rules on the initial lot and using a number of iterations 
to manipulate new shapes generated at each step.  

Usually only a small amount (3 - 6) of CGA scripts 
is needed to create a city with a great diversity [12]. 
While one rule is applied on a number of lots, each 
building is slightly different thanks to randomness 
which can be incorporated when specifying attributes 
like height, number of floors, walls textures or used 
models of doors and windows. What’s more, editing of 
the generated models is easy as well: user only needs 
to adjust one CGA file and reapply the rules to the 
selected slots. A new set of buildings can be created 
almost immediately. 
 
 
4. Modelling of Natural Phenomena 
 

The problem for urban modelling seems to be 
solved by CityEngine which is a great tool for creating 
naturally-looking streets as well as CGA-based models 
of buildings. However, there are more complex 
problems today’s modellers encounter – modelling and 
animating natural phenomena. Everyone can very 
quickly recognize whether an image of a natural thing 
like a flower or water surface was shot in a real 
environment or created on a computer. While we can 
all distinguish between what is natural and what is 
artificial, very few yet attempted to formally define the 
term. The following section provides an insight into 
such attempts, specifically for modelling of cracks and 
fractures on 3D models and creating the ocean surface. 
 
4.1. Cracks and Fractures 
 

Modelling of cracks on a given model or a surface 
could be done simply by using a graphic editor like 
Adobe Photoshop of Adobe Fireworks. Cracks would 
have to be created by hand and have the emboss or 
bevel method applied to them to look as if a part of the 
texture. However, editing the shapes would be a 
lengthy process and creating original patterns on 
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hundreds of object seems almost impossible in human 
terms. Therefore, a tool for automating the cracks 
creation is required. The existing physically based 
techniques are computationally demanding and lack 
control over crack and fracture propagation. [13] Work 
done by Martinet et al. [13] addresses the problem and 
provides an effective solution based on procedural 
modelling.  

 
Figure 4 shows the proposed simulation cycle of 

the cracking process. It starts by defining a cracking 
pattern in form of a graph which describes cracks 
branching features as well as their geometry. A 
designer then maps one point of the graph onto a 
surface and the whole graph is afterwards 
automatically transformed into a 3D skeleton. 

 
Figure 4 - simulation cycle of the cracking process [13, p. 2] 

 
The automatic process can be managed via 

parameters like width and depth of cracks, their 
directions and angles between them. All the parameters 
are stored in the initial crack pattern graph. The results 
(Figure 5) seem very promising – the system is able to 
generate cracks which are very realistic in comparison 
to real objects. 

 
Figure 5: a real vase (left) and a created model (right) [13, p. 2] 

 
Creating fractures out of a given model is a more 

complex problem. Cracks are only visible on the 
surface of an object, therefore only its texture needs to 
be manipulated. However, breaking an object into 
smaller pieces involves manipulation with its 3D mesh. 
As with the previous case, a designer first creates a 
pattern of fractures called fracture mask. Fracture 
masks define the profile of fracture between two 
fragments. Since a mask is applied repetitively to 
smaller and smaller parts (note similarity to fractals), it 
defines both overall large scale pattern of cracks as 
well as small details which make fractures surfaces 
look smooth or rough. Afterwards, fracture regions are 
defined. These are volumes which define how an 
object is split into two parts, i.e. where cracks are being 
created. 

The creation of fragments is controlled by an 
automated algorithm with two basic parameters: ΔV 
which characterises distribution of fragments sizes and 
α that defines whether fragments should be long thin 
shards or roughly round pieces (Figure 6). 

 
Figure 6: controlling the shape of fragments [13, p. 3] 

 
At every step of the algorithm location and 

orientation of a fracture mask is selected randomly and 
adjusted so that the result matches with the two given 
parameters. Fracturing an object is a matter of 
converting the initial object into a point cloud 
representation. This is a pre-processing step which 
happens only once. The object is sampled using an 
octree decomposition and on each level of the octree, 
as many points as needed are created. Points are than 
classified as inside and outside of the mask to compute 
the volume of fragments. 

 

 
Figure 7: examples of fractured models [13, p. 1] 

 
Figure 7 shows creation of fractures from various 

initial models. The times needed for generating the first 
set of fractures (18 and 48 pieces) were almost 
identical and didn’t exceed 10 seconds. About 70 
seconds were needed to produce 128 fractures. This 
implies that the time grows exponentially with the 
amount of created pieces. 
 
4.2. Creating Realistic Ocean Surface Animation 
 

When creating a realistic ocean surface animation, 
a number of factors need to be considered including 
time of the day and lighting, temperature and wind 
conditions. A number of approaches have been taken to 
solve this problem. Max’s wave model uses 
approximate equations to simulate low-amplitude 
ocean waves [14]. The surface is quite periodic though 
which is a downside [15] because the result is not very 
realistic. Peachy [16] and Fournier et al. [17] took a 
particle-system approach where the particles form the 
surface of the ocean and perform circular or elliptical 
orbits in order to simulate wave breaks. However, 



L. Pitonakova - Procedural Modeling    Downloaded from www.lenkaspace.net 
 

particle systems usually need more CPU power so they 
are not really an option for creating large virtual 
objects which need to be rendered in real-time. 

The work of Pozzer and Pelegrino [15] presents a 
solution where the ocean surface is represented by a 
flat plane and bump mapping and noise functions are 
used to alter the surface’s normal vector. The process 
uses a 2D matrix of pseudo-random numbers to 
influence pattern repetitions on the surface. The matrix 
is understood as a height field of the surface. The noise 
function defines the matrix values based on desired 
qualities of the surface: wave perturbation, speed and 
shape of waves. The algorithm is designed so that the 
values are not completely random but follow a pattern 
(Figure 8 c). Rather than calculating a height value for 
each point of the matrix individually, a common value 
is generated for a control point and applied to an 
associated block of matrix slots. The following 
algorithm is used: 

 
value  = random()*perturb 
length = random()*multiplicity 
for count = 0 to length 
   texture[x+count][y] = value 
 
This produces textures with long waves. To make it 

more realistic, two texture layers are used and 
evaluated in different scales (Figure 8 d). This allows 
controlling the perturbation degree without need to 
generate new control points. 

To produce smoothly looking surfaces, B-spline 
interpolation is used (Figure 8 a,c,d). However, great 
processing time is needed to create such a texture and 
this method is only used for texturing areas far from 
the observer.  

 
Figure 8: Texture examples: (a) random values and B-spline 

interpolation; (b) exponential interpolation; (c) multiplicity = 6; (d) 
two texture layers [15] 

 
Animating a created ocean surface requires a 

method of manipulating the texture. Simply creating a 

new texture each frame would not produce realistically 
looking animation because frames would not be 
associated with each other. To overcome this problem, 
a 3rd dimension (Z) has been introduced to the texture 
matrix. This dimension represents movement of the 
shaded plane inside the 2D texture. Each element of 
this plane is calculated by interpolating four 
neighbouring control points (2 above and 2 below) 
located on the solid texture along the Z-axis whose X 
and Y coordinates are equal to the point of the plane 
being computed. The animation is than created by 
changing the X-Y plane texture over the time (along 
the Z-axis). 

To control such an animation, three parameters can 
be used: X and Y for wave displacement and Z for 
shape change (the longer the z-axis, the more surface 
changes over time). 

 

 

 
Figure 9: examples of created ocean surface [15] 

To complete the animation, some lighting 
processing needs to be done. Diffuse and specular 
reflections are used to model the light. The initial water 
colour is combined with the diffuse reflection value 
and the source colour is multiplied by the specular 
reflection value. The two colours are added together on 
each point of the final surface matrix. This produces 
some realistically-looking results shown in Figure 9. 
 
 
4. Procedural Modelling of Natural 
Phenomena Motion 
 

After creating a procedural model of a natural 
phenomena (e.g. trees, wind, water) we usually end 
with a great number of primitives which a model 
consists of. If pseudo-random numbers are used to 
create these primitives, traditional key framing 
technique for creating motion would not be a suitable 
solution because an animator would need to manipulate 
each primitive [18].  
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Green and Sun [18] introduced motion verbs as a 
higher-level script-driven approach to modelling 
motion of such a great number of objects. Motion 
verbs are applied to each of the particles of a given 
type during the animations. The motion processes are 
generated at the same time as the primitives, which 
enables them communicate with the processes of 
connected primitives. Green and Sun mention an 
example where motion of tree branches is connected to 
the motion of their parent and sub branches. A motion 
process first determines states of the neighbour 
branches and then computes the motion.  
 
4.1. The MML language 
 

The MML language was introduced to encode the 
motion verbs into a working programme. The authors 
also provided an interactive interface for creating 
MML – based motion which uses a primitives model 
and another interface for experimenting with MML 
models. 
The structure of a motion modelling script is the 
following: 

1. Primitives section which defines names of 
primitives and the list of their attribute names and 
data types.  

2. Generate section which describes how individual 
generations of primitives are created. The 
implementation is used on a rule-based model of 
the generation process.  

3. Motion section where motion verbs are declared. 
Each motion verb has parameters and functions. 
Minimum and maximum possible values of each 
parameter (attribute) are defined. The motion 
functions are associated with certain particle 
names and their bodies are filled with C 
statements. 

4. Render section which describes how the primitive 
are displayed. It is possible to define actions 
executed in the beginning and in the end of each 
frame using statements in C. These statements are 
associated with names of primitives and are fully 
responsible for their rendering. 

 
An example of MML- based motion is a fountain 

where the falling water is a particle system (Figure 10). 
There are two types of particles: one for water and 
another one for the fountain source. To save the 
processing time, the particles which hit the ground or 
reach end of their life time for any other reason are 
deleted. 

Figure 10: artificial fountain 
 
A rather significant issue with the current system is 

that it doesn’t allow for more motion verbs to be 

applied to a particle at the same time. In the current 
implementation version the motion processes are 
executed one after each other but are not able to 
communicate (e.g. if a branch was moving because of 
the wind and some other outer force, a realistically 
looking motion would be a combination of the two 
forces). Further research needs to be done in order to 
solve this problem. 

 
 

5. Procedural Modelling in Practice 
 
Procedural; modelling is used in games to generate 

large 3D environments in time shorter than required by 
usual modelling techniques. New games like Star Trek 
online tend to move towards this 
way of representing objects 
which allows for creation of 
distinctive and strange sights all 
over the game's universe [19].  

An experimental game 
called Charbitat [20] uses 
procedural modelling and pre-
modelled sample objects to 
create the world during the 
game play, based on player's 
actions. The game's goal is 
exploration and generation of space in the mind of a 
Chinese princess who fell into coma. The new 
modelling approach provides scalable, continuous and 
unique world for every game played. 

MojoWorld developed by Pandromeda is another 
example of how procedural modelling can be used. It is 
a software where user can create their own planets 
based on a number of parameters like scale, 
atmosphere thickness, distance from the nearest star, 
level of gases in the atmosphere, terrain elevation, 
water distribution, etc. [21] Although MojoWorld is 
quite hungry for graphic card memory, it is a useful 
tool for creating interesting personalised environments. 

 
The examples above show that software and games 

where procedural modelling is used introduced new 
interesting features and faster real-time rendering. The 
latter is especially necessary for online multiplayer 
games like Star Trek Online. These advantages are 
probably a trade-off for a more natural approach to 
creating 3D models. 

 
 

6. Summary 
 

In this paper I discussed various procedural 
modelling techniques and uses. First I provided an 
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overview of basic terms including fractals and L-
systems. Then I introduced CityEngine, a leading 
software tool for creating procedural cities in a 
relatively short time. I also looked at modelling and 
animation of natural phenomena, namely generation of 
cracks on a surface, fractures creation and ocean 
surface modelling and animation. The following 
section provided information about the MML 
language, a grammar used for applying motion to 
procedural models with a high amount of primitives. In 
the end a number of games and software which uses 
procedural modelling was mentioned along with 
interesting features which procedural modelling 
allowed for. 
 
 
7. Conclusion 
 

Procedural modelling proves to be a much more 
efficient technique for creating complex structures and 
natural phenomena than usual modelling techniques. It 
provides control over the shapes and creation of 
primitives, while leaving space for randomness and 
variation. Procedural models can be used in science to 
represent complex structures or in games and movies 
for fast real-time rendering of very realistic models.  

Providing that further research is undertaken in the 
field of formal definition of the things around us, there 
is no doubt that procedural modelling will not only 
provide more and more realistic and life-like models 
but also help us understand the way nature works and 
creates. 

The fact that we can mathematically define real 
objects is fascinating - it proves that complexity in 
nature comes from iterated simplicity of its small 
elements. Fractals and other self-similar structures can 
be found all around us. Procedural modeller needs to 
find the simplicity in order to create real-life structures. 
If we proceed with and extend this way of thinking 
further, we will be able to understand objects and 
processes in the nature and maybe define the nature 
itself as a set of rules applied to the basic particles 
which form everything we see around us. 
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