Pitonakova - Boid Game Playing through Randomised Movement

Downloaded from lenkaspace.net

Boid Game-Playing
through Randomised Movement

Lenka Pitonakova
contact@lenkaspace.net
University of Southampton 2012

Abstract: The original boid flocking algorithm is extended by adding randomised movement to the flock
members. This approach is a light-weight alternative to other ‘follow the leader’ techniques implemented in
order to create a ‘game-playing’ behaviour during which a flock changes its movement direction as

observed in real birds.

Keywords: flocking, boids, random movement

1. Introduction

The boid flocking algorithm, first introduced
by C. W. Reynolds (1987), represents a
biologically inspired approach to collective
motion animation where agent-level
behaviour replaces more traditional
computer animation techniques that often
involve centralised or pre-scripted control.
Reynolds argued that traditional computer
animation made creation of realistically
looking flocks very hard or nearly impossible
to implement, whereas an alternative
technique based on continuous individual-
level calculations would remove obstacles
such as difficulty of centralised motion
planning.

There is however a trade off to be made when
implementing boid flocking, such as the lack
of precise group movement control
(Reynolds, 1987) or slow algorithm speed
when large flocks are used (Bourg & Seeman,
2004, pp. 57; Hartman & Benes, 2006; Silva et
al, 2009) Nevertheless, boid-inspired flocks
and herds of artificial animals were used in
games like Grand Theft Auto and Pikim, as
well as movies including The Lord of The
Rings or The Lion King (Silva et al., 2009).
Martinez et al. (2008) used boids as spatial
clues in adventure games and Bajec et al.
(2003) showed that boids with imprecise
fuzzy logic could look realistically despite the

lack of crisp mathematical calculations. More
unusual implementations of boid-like
collective behaviour include granular sound
synthesis (Kim-Boyle, 2007) and a special
case of particle swarm optimization (Cui &
Shi, 2009).

This paper presents implementation of the
original Reynolds’ model and extends it by
allowing agents to move randomly in order to
create more life-like behaviour.

2. The Original Model

The original model was implemented in a
650x650 pixel 2D ‘torus’ arena where the
view field and the position of an agent
wrapped around the world during motion.
The size of each boid was 20x20 pixels. One
simulation update loop was executed each
1/60 seconds and each simulation run lasted
600 seconds. Every run started with boids
randomly rotated and having random speed
between the minimum (0.4 pixels per update
loop) and maximum (2.0) allowed. The boid
movement was simulated as continuous
(Reynolds, 1987; Bourg & Seeman, 2004, pp.
16-19), where the centre of its body was
moved by a floating-point value every time
step.

Pitonakova - Boid Game Playing through Randomised Movement

Downloaded from lenkaspace.net

The rotation of a boid could change by a
maximum of around 32 degrees per second
and the speed could change at any rate, given
that it remained within the <0.4; 2.0> range.
The velocity change was calculated using the
following three components as described by
Reynolds
- Separation:
neighbours
- Alignment: try to match velocity with
neighbours
- Cohesion: steer towards perceived
average position of neighbours

steer away from the

Formal calculations are given in Bajec et al.
(2007) and Hartman & Benes (2006). This
paper follows Bourg & Seeman’s (2004, pp.
53-73) vectorised implementation.

The velocity change is calculated based on the
nearest agent neighbours. Reynolds defined
this neighbourhood as a sphere with
backward occlusion and the impact of a
neighbour within the sphere was weighted
based on its distance. Other authors used
different shapes of the view field, for instance
a full sphere (Bajec et al., 2003; Silva et al,,
2009) or a very narrow forward-pointing
cone (Bourg & Seeman, 2004, pp. 65),

without implementing the neighbour
distance adjustment. The radius of the
neighbourhood ranges in different

applications, from 3 (Silva et al, 2009) to 7
agent body lengths (Bajec et al, 2003). The
model implemented for this paper uses the
original Reynolds’ wide view field translated
into 2D with radius of 5 body lengths (Figure
1).

Once the individual velocity change requests
are calculated, many authors (Bourg &
Seeman, 2004, pp. 68-73; Hartman & Benes,
2006; Martinez et al.,, 2008) simply multiply
them with fixed weights and add them
together, cutting the resulting force to fit
within a velocity change range. Reynolds
himself suggest that this produces behaviour
that works “pretty well”, although a request
accumulator is needed when resolution of
conflicts is important, for example when two
steering requests point to opposite directions
and therefore cancel each other as it could be
the case during obstacle avoidance. Reynolds
therefore implemented an accumulator by

+ x Y ¥ ¥
P ® » dgﬁ % o * «
g <+ ¥ " » fﬁ&i;i o
o ég +* x & * <
& % ¥ % - %
o MR £ nx - ™ xz%‘é
N MWW ?i&{(*
R AP SN Y "
S P A SR I N
» ~
*‘t)\}{! ;ﬁif’%& g X }1}%22 ¢$\)
/ 4 '}4@?‘} ‘% -+ /
&v’l& ¥ ﬁ ¥ty w "
‘,’/ *ro< EX ﬂ% 5_*
yixa xe v h o "a X
i g'% »n - k"%ii& ,gﬁ " :ﬁ ﬁ
vore »¥ ffﬁs
A % o,
LA T + 4 B
< * R ¥ x A
S . Y TSAM

Figure 1: Field of vision of a boid in a torus world. The boid
is marked in red and its visible neighbours are green.

calculating magnitudes of each request and
adding them together wuntil a specific
threshold was reached, at which point the
last velocity change request was trimmed to
compensate for the excess magnitude and the
rest of the requests were set to 0.

Figures 2 and 3 show that under conditions
with no obstacles and no randomness, using
the request accumulator made no difference
in terms of how fast boids agreed on
collective orientation and speed. While the
common speed stabilised fairly quickly,
standard deviation of rotation Kkept
logarithmically decreasing for around 240
seconds, depending on the flock size.
Furthermore, it took a smaller flock longer to
agree on a common orientation, but the
differences between individuals were smaller
afterwards.

Using of the request accumulator also had no
effect on occurrence of boid-to-boid collisions
(Figure 4). The presented results are based
on 200 runs and the used request weights
were 0.2 for cohesion and separation and 0.6
for alignment.

Wave-like adjustments were observed during
flock stabilisation, especially in runs with 50
boids when the request accumulator was
used. This suggests that while using the
accumulator did not affect the algorithm per-

Pitonakova - Boid Game Playing through Randomised Movement

Downloaded from lenkaspace.net

@
S

~
=)

Y
=)

v
=]

w
S

N
1)

-
°©

Orientation standard deviation
»
8

e

0 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600

Time
— ORIG:N=10 .~ ORIG:N=30 == ORIG:N =50
— NRA:N=10 .~ NRA:N=30 == NRA:N=50

Figure 2: Average standard deviation of boid orientation
across 200 runs, sampled during 30-second intervals using
the Reynolds’ original (ORIG) algorithm and the algorithm
with no request accumulator (NRA) in flocks of size N.

0.25

0.20

0.15

Speed standard deviation

—
O'O%D 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600

Time
— ORIG:N=10 .- ORIG:N =30 == ORIG:N =50
— NRA:N =10 — NRA:N = 30 =a NRA:N = 50

Figure 3: Average standard deviation of boid speed across
200 runs, sampled during 30-second intervals. See Figure
2 for the legend clarification.

2 005
il
)
= 0.04
5}
v
u— \
O 0.03}\ \
=
.2
£ 0.02
o
Q
2 001
& o 5
—
D —— e e e —— =
0-085—66 96 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600
Time
— ORIG:N=10 . ORIG:N =30 == ORIG:N =50
— NRA: N =10 — NRA: N = 30 == NRA: N = 50

Figure 4: Proportion of boids colliding with another boid
averaged across 200 runs and sampled during 30-second
intervals. See Figure 2 for the legend clarification.

formance, believability of the animation was
increased. However, this observation is to
some extent a matter of subjective opinion.

3. The Game-Playing Model

Velocity of a stabilised flock using the original
model did not change, making the animation

look rather non-interesting. In contrast, real
birds often ‘play games’, i.e. repeatedly
change direction of their collective flight
(Hartman & Benes, 2006). The change does
not happen simultaneously but it is rather
spread through the flock like a shock wave
(Reynolds 1987). Schools of fish exhibit
similar behaviour (Couzin, 2005).

It has been argued that simply setting a
global force in all boids to achieve collective
velocity change creates unrealistic motion
(Reynolds, 1987; Hartman & Benes, 2006).
Instead, a boid can be designated as a
“leader” and change the flock direction
progressively. However, only boids on the
edge of the flock are often allowed to become
leaders and a leader often needs a separate
function to calculate a velocity that would
translate it away from the flock (Bourg &
Seeman, 2004, pp. 76-79; Hartman & Benes,
2006).

This paper explores an alternative where a
random velocity change vector is added to
any boid at any time in order to achieve the
game-playing behaviour. In the accumulator
implementation, random movement is added
as the last request but has a weight of 1.0, i.e.
fills in whatever accumulator space is left.
Rather than having a ‘leader’ state, each boid
randomly enters a ‘random movement’ state
approximately each 25 seconds and remains
in this state for around 5 seconds. A random
steering vector is picked when a boid starts
the random movement and is always added
to the resultant velocity until the boid
resumes normal behaviour. This method
assures that a) the randomly-moving agent
can move the flock in any direction since it
does not only try to steer away from the flock
b) the movement is smooth as the same
randomised vector is added during the
randomised motion and c¢) although any
agent can enter the random movement state,
other forces like alignment or cohesion
become stronger if another flock member is
already moving randomly, providing a
continuous transition of an individual from
normal to random movement and back and
removing the need for explicit agreement on
who the leader is.

Pitonakova - Boid Game Playing through Randomised Movement

Downloaded from lenkaspace.net

A flock with added random movement could
stabilise itself but also change its direction as
randomness became more important than
the other forces.

3
S

~
S

-
S

v
o

w
S

N
)

-
o

|

Orientation standard deviation
»
5

%D 60 90 120 150 180 210 240 270 300 330 S_é_U 390 420 450 480 510 540 570 600
Time
— ORIG:N=10 .-~ ORIG:N=30 ==a ORIG:N =50
— RAND: N=10 .. RAND:N =30 s RAND:N =50

Figure 5: Average standard deviation of boid orientation
across 200 runs, sampled during 30-second intervals using
the Reynolds’ original (ORIG) algorithm and randomised
movement (RAND) in flocks of size N.

R | /\/\W\ e / \/w :

25 S0 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625

Time

(@)

Orientation standard deviation
HENSC N

0 Aa) /\ \\ M\

., J\/ W W’\[

.

S T R P B T P A R T RS SR R AR AR R o

Time

(b)

Orientation standard deviation

Orientation standard deviation

P e MV

75 S0 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 S50 575 600 62

Time

(c)

Figure 6: Standard deviation of boid orientation in
exemplary runs, sampled during 1-second intervals using
randomised movement in flocks of size 10 (a), 30 (b) and
50 (c).

Furthermore, a large enough group
sometimes split up and re-joined as multiple
boids distant from each other entered the
randomised state, providing more realistic
movement than the original model. Similar
flock splitting was observed by other authors
who implemented their own ‘follow the
leader’ rules (Bourg & Seeman, 2004, pp. 76-
79; Hartman & Benes, 2006).

Figure 5 shows that the average standard
deviation of orientation decreased slower
than without random movement and that it
did not fall below 25 degrees. It is however
important to note that this is an effect on
averaging over 200 runs. Recordings from
individual runs (Figure 6) reveal that the
common orientation was periodically agreed
on and disturbed regardless of the flock size,
although smaller flocks experienced on
average lower deviations. A similar effect was
observed for the standard deviation of speed
(Figure 7).

4
w
o

o
N
a

m

—a e s e, ., .

Speed standard deviation
© o o
s & 3

14
o
a

0.0 e =
0 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600

Time
— ORIG:N=10 .~ ORIG:N=30 == ORIG:N=50
— RAND: N=10 .- RAND:N =30 «a RAND:N =50

Figure 7: Average standard deviation of boid speed across
200 runs, sampled during 30-second intervals. See Figure
5 for the legend clarification.

Proportion of collisions

14
o
=

o
°
e

0 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600

— ORIG: N =10
— RAND: N =10

~— ORIG:N=30 == ORIG:N =050
~— RAND: N =30 == RAND:N =50

Figure 8: Proportion of boids colliding with another boid
averaged across 200 runs and sampled during 30-second
intervals. See Figure 5 for the legend clarification.

Pitonakova - Boid Game Playing through Randomised Movement

Downloaded from lenkaspace.net

The average amount of collisions also
increased when random movement was
introduced and this effect was observed more
strongly for larger flocks (Figure 8).

4. Discussion

An interesting property of the implemented
original flocking algorithm is the fact that
even though each run started with random
boid velocity, the flock always stabilised
pointing downwards, i.e. with 180 degree
rotation, regardless of the flock size (Figure
9). It was found that this equilibrium point
could be manipulated by adjusting weights of
the individual velocity change request but

+
?
¥ T "
+ +
+ *?
v
+
¥
+
v ¥ ¢
?1‘
+
|
+ ¥
?

Figure 9: Example of finalised orientation in a 30-member
flock.

=
8

Final ave:lage speed
k-1 [H
4r4m44‘4

o
%]

0.0

ORIG:
N =10

ORIG:
N =30

ORIG:
N=50

RAND: RAND: RAND:
N=10 N=30 N=50

Figure 10: Box plots of average boid speed at the end of a
run, based on 200 runs. See Figure 5 for legend
clarification.

that there was always only one attractor
orientation value. Further investigation into
the vector calculations that governed the
flock movement is needed in order find out
why this occurred.

Likewise, the average final speed achieved
throughout 200 runs with any flock size was
around 1.2, i.e. the middle point between the
minimum (0.4) and maximum (2.0) speed.
However, unlike the case with orientation,
the final speed varied and the variation was
greater in smaller flocks (Figure 10).

As it was expected, addition of randomised
movement caused the final orientation and
speed to vary significantly between the runs.
Similarly than with non-randomised motion,
smaller variance was observed in larger
flocks (Figure 10).

It was shown on Figure 8 that flocks with
randomised movement experienced higher
collision rates. It was possible for multiple
boids that were far from each other to start
pulling the flock into different directions,
resulting in many conflicts between the sub
flocks that formed. This effect was especially
evident when observing 50-member flocks. A
similar problem was noted when the request
accumulator was not used, i.e. when the
random movement vector was simply added
to the other forces before restricting the final
velocity change to the acceptable range (data
not shown). This suggests that higher
collision occurrence did not result from a
conflict between the random velocity change
and the other requests, in which case the
request accumulator would have presumably
delivered better results than simple adding of
the forces. It is possible that better balance
between the individual requests, smaller
random velocity change vectors or a wider
field of view would minimise the collisions.

Nevertheless, the addition of randomised
movement did provide more realistically
looking animation than when the original
rules of separation, alignment and cohesion
were followed. In contrast with other “follow
the leader” implementations, randomised
movement does not need calculation of
additional vectors and does not make
assumptions about the leader’s position

Pitonakova - Boid Game Playing through Randomised Movement

Downloaded from lenkaspace.net

relative to its neighbours. The flock or at least
a part of it follows a boid who came up with
the idea of changing its velocity first.

Project code and executable

Full Java code for this project can be
downloaded from
http://lenkaspace.net/downloads/code/boid
GamePlaying.zip

A runnable Java applet can be found on
http://lenkaspace.net/previews/boidGamePI

aying

References

Bajec, L.L., Mraz, M. & Zimic, N., 2003. Boids
with a fuzzy way of thinking. Proceedings
of ASC, pp.58-62.

Bajec, L.L., Zimic, N. & Mraz, M., 2007. The
computational beauty of flocking: boids
revisited. Mathematical and Computer
Modelling of Dynamical Systems, 13(4),
pp-331-347.

Bourg, D. M., & Seeman, G., 2004. Al for game
developers (1st edition). Sebastopol: O’
Reilly Media.

Couzin L. D. et al. (2005) ‘Effective leadership
and decision-making in animal groups on
the move’. Nature, 433:513-516

Cui, Z. & Shi, Z., 2009. Boid Particle Swarm
Optimization. International Journal of
Innovative Computing and Applications,
2(2), pp.77-85.

Hartman, C. & Benes, B.,, 2006. Autonomous
boids. Computer Animation and Virtual
Worlds, 17(3-4), pp.199-206.

Kim-Boyle, D., 2006. Spectral and Granular
Spatialization with Boids. Proceedings of
the 2006 International Computer Music
Conference, pp.139-142.

Martinez, J. et al, 2008. Animal Flocks as
Natural and Dynamic Spatial Clues in
Adventure Video-games. The International
Journal of Virtual Reality, 7(2), pp.73-80.

Reynolds, C.W., 1987. Flocks, herds and
schools: A distributed behavioral model.

ACM SIGGRAPH Computer Graphics, 21(4),
pp.25-34.

Silva, A., Lages, W. & Chaimowicz, L., 2009.
Boids that See : Using Self-Occlusion for
Simulating Large Groups on GPUs. ACM
Computers in Entertainment, 7
(December), Article 51.

