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Abstract

Autonomous task allocation is a desirable feature of robot
swarms that collect and deliver items in scenarios where con-
gestion, caused by accumulated items or robots, can tem-
porarily interfere with swarm behaviour. In such settings,
self-regulation of workforce can prevent unnecessary energy
consumption. We explore two types of self-regulation: non-
social, where robots become idle upon experiencing conges-
tion, and social, where robots broadcast information about
congestion to their team mates in order to socially inhibit for-
aging. We show that while both types of self-regulation can
lead to improved energy efficiency and increase the amount
of resource collected, the speed with which information about
congestion flows through a swarm affects the scalability of
these algorithms.

Introduction

Congestion is an important factor that can negatively af-
fect the performance of robot swarms (Hoff et al., 2010).
Today’s robotic systems, utilised in automated warehouses
(D’ Andrea, 2012), agriculture (Cartade et al., 2012), or in
hospitals (Thiel et al., 2009), must maintain effective work
schedules for individual robots in order to minimise inter-
ference between robots and save energy. Decentralised task
allocation, which affords redundancy and scalability, has
been proposed as a possible solution (Wawerla and Vaughan,
2010; D’ Andrea, 2012) that is likely to become more im-
portant in the near future as autonomous robot swarms will
increasingly be deployed in unstructured and dynamic envi-
ronments. In this paper, we explore the problem faced by
a robot swarm that collects items from the environment and
can cope with congestion by regulating its workforce in a
decentralised manner in order to save energy. Furthermore,
we explore how the means by which information about con-
gestion is obtained by the robots affects the scalability of the
swarm’s performance under various foraging conditions.
During foraging, congestion can either result from the
size of the robot population or from the structure of the envi-
ronment. For example, robots might be required to wait until
an occupied resource drop-off location becomes accessible
(Wawerla and Vaughan, 2010) or they might need to queue

in order to leave a crowded drop off location to perform
more work (Krieger and Billeter, 2000). An autonomous
robot swarm should be able to sense when congestion has
become a problem and adjust its workforce accordingly.

We simulate robot swarms that collect items from the en-
vironment and drop them off in a central base, from where
the items are consumed at a given rate. We explore two types
of workforce self-regulation: non-social, where robots be-
come idle upon directly experiencing severe congestion, and
social, where a robot will inhibit the foraging of its team
mates by signalling them to become idle when the conges-
tion that it experiences is severe. We show that both types
of self-regulation can lead to significant energy savings and
thus to a greater number of items collected when the en-
ergy available to the robots is limited. More importantly,
we demonstrate that the speed with which information about
congestion flows through a swarm, either when robots de-
tect congestion themselves or when they exchange informa-
tion with their team mates, affects the swarm’s ability to re-
spond to it appropriately. While social self-regulation re-
sults in rapid information flow and can lead to significant
performance benefits in certain scenarios, it can also lead
to significantly worse performance in others. On the other
hand, non-social self-regulation, where information flow is
slower, leads to improved energy efficiency across a greater
number of foraging conditions, making it more suitable in
unknown environments, although it is outperformed by so-
cial self-regulation in some cases.

The following sections provide an overview of related
work and a description of our simulation and analysis meth-
ods. We then compare, across a number of experimental sce-
narios, the performance of our two types of self-regulated
swarms with that of control swarms that do not use self-
regulation. We evaluate both the amount of energy needed to
collect items and the number of items collected when robot
energy is limited. We conclude with a discussion of how
our results relate to our previous work on information flow
in swarms (Pitonakova et al., 2016) and provide examples of
real-world applications where the two types of self-regulated
swarms could be used.



Related Work

Route planning systems that optimise robot traffic are of-
ten used in controlled warehouse environments with small
robot teams (Vivaldini et al., 2010; Mather and Hsieh, 2012).
However, such approaches require a centralised controller
to guide robot behaviour and are thus unsuitable for large
swarms, where computation of optimal solutions becomes
infeasible (Dahl et al., 2009). Furthermore, a model of the
environment and of the tasks within it, which centralised
planning systems rely on, can be difficult to obtain in dy-
namic or unstructured environments. On the other hand, de-
centralised decision making, where robots change their be-
haviour based on limited local information obtained through
their sensors, is more suitable for complex tasks of this type
(Hoff et al., 2010).

Decentralised robot decision making has been well stud-
ied in a number of logistic and foraging applications. For ex-
ample, unmanned vehicles that need to transport items from
one location to another can adjust their work time and decide
to recruit others based on the number of items in pick-up lo-
cations (Wawerla and Vaughan, 2010). In behaviour-based
robotics, a combination of environmental cues, such as the
presence of items or other robots nearby, can trigger or in-
hibit foraging behaviour, leading to self-organised division
of labour between robots that are idle and those that collect
resources (Jones and Mataric, 2003). Alternatively, ‘bucket
brigading’ robots can form chains of work areas and pro-
gressively transport items between two locations (Shell and
Mataric, 2006; Pini et al., 2013) and even adapt the size of
the work areas based on collisions with other robots in order
to improve their performance (Lein and Vaughan, 2009).

The Response Threshold Model (RTM) is a self-
regulatory mechanism inspired by social insects (Bonabeau
et al., 1997) that has been applied in a number of simulated
and real-world robot experiments. According to the model,
robots alternate between foraging and resting based on some
internal, environmental or social cues in order to optimise
their energy consumption. For example, robots can count
the number of items stored in the base and only leave to for-
age when the number is below a specified threshold (Yang
et al., 2009). Robots can also evaluate how many items they
encountered during foraging and decide to rest if the envi-
ronment is not rich enough (Labella et al., 2006). By count-
ing the number of collisions with other robots (Liu et al.,
2007) or by detecting drops in their own expected perfor-
mance (Dahl et al., 2009), robots can decide to rest if they
estimate that congestion is beyond an acceptable level. Fi-
nally, in dynamic environments, where the number of items
in the environment changes over time, robots can decrease
the energy cost of collecting items by only foraging when
enough items are available, estimating the state of the envi-
ronment in either a centralised (Liu et al., 2007) or decen-
tralised (Dai, 2009) manner.

Our work builds on the Response Threshold Model liter-
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Figure 1: ARGoS simulation screenshot of the base and a
deposit Dm away from the base edge. The base consists of
a resting bay, an observation bay and an unloading bay. A
light source is placed above the centre of the base to guide
robot navigation. Pellets collected by the robots temporarily
accumulate in the unloading bay, causing congestion.

ature, and in particular on the work of (Liu et al., 2007) and
(Dai, 2009), where robots estimated the level of congestion
in order to prevent unnecessary energy consumption. How-
ever, we apply the RTM in a novel scenario, where success-
ful foragers recruit other robots to the worksites that they
are exploiting (see also Pitonakova et al., 2014, 2016).

Furthermore, we provide novel insights into the role
played by information flow in decentralised congestion es-
timation. In our non-social model, congestion is estimated
by each robot individually, while in the social model, robots
communicate their estimates to nearby robots in order to so-
cially inhibit foraging.

Our approach to congestion estimation is inspired by the
self-regulatory behaviour of honey bees foraging for nectar
(Anderson and Ratnieks, 1999; Gregson et al., 2003). When
nectar is abundant, foragers may bring more nectar into the
hive than the nectar-receiving bees can cope with. In order to
prevent unnecessary foraging, individual foraging bees eval-
uate how long it takes for their nectar to be unloaded. If
unloading is taking too long, a forager will tremble dance
around the nest, inhibiting other bees from recruiting and
thus reducing the number of foragers. Our social RTM uses
a similar principle.



Methods
Environment

All our experiments are performed in the ARGoS simula-
tion environment which implements realistic 3D physics and
robot models (Pinciroli et al., 2012). The simulation has
continuous space and updates 10 times per simulated sec-
ond. A circular base with a diameter of 3 metres is situated
in the centre of the experimental arena. The base is divided
into three sections (Figure 1): an interior circular resting bay
with an annular observation bay around it and an annular
unloading bay around that. A light source, placed above the
centre of the base, is used by robots as a reference for nav-
igation towards and away from the base centre (as in, e.g.,
Krieger and Billeter, 2000; Pini et al., 2013).

Cylindrical resource deposits with radius rp are placed
outside of the base, each containing an unlimited volume of
resource. In order to enable robots close to a deposit to move
towards it, a colour gradient with radius r¢ is present on the
floor around each deposit.

We explore two types of scenarios:

e HeapN: N < 4 deposits distributed evenly around the
base at a distance D = {5,7,9}m from the base edge.
These deposits represent large heaps of resource (e.g.,
mineral deposits), with rp = 0.5m and r¢ = 3m.

e ScatterN: N > 10 deposits randomly distributed between
D — 5m and D + 5m from the base edge. These deposits
are small (e.g., litter on a street), with rp = 0.1m and
ro = 1lm.

Robots

The simulated MarXbots (Bonani et al., 2010) are circu-
lar, differentially steered robots with a diameter of 0.17m
that can reach a maximum speed of 5cm/s in our simula-
tion. The robots use infra-red sensors for obstacle avoidance
and communication, colour sensors for navigation towards
nearby deposits, and a light sensor for phototaxis towards
the base (see Pitonakova et al., 2016, for more details). The
robots are modelled as finite-state machines and can imple-
ment three types of homogeneous swarm: control swarm,
non-social self-regulators, and social self-regulators (Fig-
ure 2).

Control swarm robots exhibit basic foraging behaviour
with no self-regulation. A robot starts with a random ori-
entation and a random position in the observation bay as an
observer, ready to receive and follow recruitment signals.
An observer moves randomly across the observation bay
and avoids traveling into the unloading and resting bays. At
each time step an observer can become a scout with scouting
probability p(S) = 1073, A scout leaves the base and uses
Lévy movement (Reynolds and Rhodes, 2009) to search for
a resource deposit within 20m of the base. The robot up-
dates its estimated location relative to the base using path
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Figure 2: Finite state machine representation of the robot
controller in swarms with (a) non-social self-regulation, and
(b) social self-regulation. The behaviour of the control
swarm controller is displayed in dashed boxes.

integration based on odometry at each time step (e.g., Lem-
mens et al., 2008; Gutiérrez et al., 2010). When a deposit
is found, the robot loads one unit of volume of resource and
returns back to the base utilising phototaxis, while keeping
track of its position relative to the deposit using odometry.
Odometry noise is not modelled. Any scout that cannot find
a deposit within 600s returns to the base and becomes an
observer.

A laden robot returning to the base drops off its load in the
unloading bay in the form of four pellets of size 0.1m3. The
robots cannot push existing pellets around and thus have to
avoid them in order to traverse the unloading bay. A new
pellet can only be deposited when there is enough free space
in front of the robot. Deposited pellets disappear from the
simulation (representing their utilisation by a hypothetical
unmodelled system of robots or human users) after a period
of unloading bay handling time, tz;. When tg = 1s, pellets
disappear very quickly and do not cause congestion. By in-
creasing the value of ¢z, we can experiment with the level
of congestion in the simulation, as more accumulated pellets
make entering and leaving the base more difficult.

After depositing the pellets, the robot moves further into
the base and performs recruitment for 120s, randomly mov-



ing across the base while avoiding re-entering the unloading
bay. A recruiter advertises the fact that it has information
about a deposit to all observers located within recruitment
range of 0.6m. Deposit location is communicated to each
observer in a one-to-one fashion by taking into account the
local axes of the robots and their alignment relative to each
other (Gutiérrez et al., 2010). The recruiter resumes forag-
ing from the same deposit after it completes recruitment.

In self-regulated swarms, robots additionally measure
their pellet unloading time, ty, i.e., the time between en-
tering the base and leaving the unloading bay. Robots in
swarms with non-social self-regulation (Figure 2a) proceed
to the resting bay and become idle after depositing pellets
if congestion is severe (i.e., ty > 60s). An idle robot con-
sumes a negligible amount of energy (as in, e.g., Wawerla
and Vaughan, 2010) and can be woken up and immediately
recruited by a recruiter, i.e., by a robot that does not experi-
ence severe congestion. In order to avoid deadlocks, an idle
robot can also wake up spontaneously with a waking proba-
bility p(W) = 10~*.

Robots in swarms with social self-regulation (Figure 2b)
do not become idle after experiencing severe congestion
(i.e., when ty; > 80s), but become tremble dancers instead.
A tremble dancer travels randomly across the observation
bay and broadcasts stop signals to all robots within a 0.9m
range for 120s, after which it leaves the base to resume for-
aging without recruiting. Stop signals inhibit foraging as
any observer or forager that receives a stop signal moves to
the resting bay and becomes idle. Stop signals also inhibit
recruitment, as they cause any recruiter in range to cease re-
cruiting and immediately leave the base to forage.

Analysis

We performed 50 simulation runs that lasted 4 simulated
hours in Heapl, Heap4, Scatter10 and Scatter25 scenarios
and compared the performance of all three swarm types us-
ing Nr = 25 and Nr = 50 robots. Since we are interested
in efficient energy usage, we define a performance metric,
energy efficiency, C, which represents the amount of energy
a swarm spends in order to collect a unit of resource:

R

C=7% (1)
where R is the total amount of resource collected by the
swarm and F is the total amount of energy expended by
the swarm. It is assumed that an idle robot expends O
units of energy per second and a robot in any other state
expends 1 unit of energy per second. Since the control
swarm robots are never idle, control swarms spend a total
of Nr x (4 x 60 x 60) = Np x 14,400 units of energy
in each 4-hour experiment. We compare C' values achieved
by the two types of self-regulated swarms with that achieved
by the control swarms in order to find out how advantageous
self-regulation was in different scenarios.

We also analyse how much resource the swarms collected
when energy availability was limited. During this analysis,
it is assumed that all robots stop working when the swarm
spends N x E’ units of energy, where E’ is the energy
limit per robot. Energy limits may play a role for example in
planet exploration, where robots might use a common solar-
powered energy repository of a limited capacity.

Simulation Results

In the following sections, we compare the control swarms to
each of the two kinds of the self-regulated swarms in terms
of their energy efficiency, C, and the amount of resource
they collected, R. We show that the self-regulated swarms
can achieve better C' in scenarios where pellets cause sig-
nificant congestion. Furthermore, self-regulation leads to a
higher amount of resource collected when the total energy
available to the swarms is limited in such scenarios. We also
discuss cases when self-regulation leads to performance de-
terioration, especially when social self-regulation is used.

Energy efficiency

In this section we report the performance (in terms of energy
efficiency) of different swarm types in each of 48 scenarios:
2 swarm sizes (25 and 50) x 2 unloading bay handling times
(5s and 20s) x 3 deposit distances (Sm, 7m , and 9m) x
4 deposit distribution types (Heapl, Heap4, Scatter10 and
Scatter25). In each case, we report the average performance
of 50 self-regulated swarms relative to the average perfor-
mance of 50 control swarms in the same scenario.

First we will summarise the performance of the control
swarms, depicted in Figure 3. Their resource collection per-
formance was more attenuated by congestion when the num-
ber of robots was large (Np = 50) and when unloaded
pellets did not disappear quickly from the unloading bay
(tg = 20s). Congestion was especially problematic in sce-
narios with a large number of deposits and when deposits
were closer to the base. More severe performance deteriora-
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Figure 3: Resource collection performance of control
swarms relative to experiments with no congestion (i.e.,
when tg = 1s).
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Figure 4: Performance of non-social self-regulated swarms
relative to control swarms.
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Figure 5: Performance of social self-regulated swarms rela-
tive to control swarms.

tion was measured in the Scatter scenarios, where multiple

foraging locations were exploited at the same time, causing

fast pellet accumulation around the whole unloading bay.
Evaluating the performance of non-social self-regulated

swarms relative to that of control swarms (Figure 4) indi-
cates that non-social self-regulators tended to enjoy more of
an advantage when control swarms were more affected by
congestion. Consequently, where congestion was very mild
(e.g., a small number of robots foraging for a few heaped de-
posits distributed far from a base that handles unloaded de-
posits quickly), the performance of non-social swarms and
control swarms was very similar (=~ +1% difference), and
control swarms even enjoyed a 5% advantage in the mildest
Scatter10 scenario. However, where congestion tended to
be severe (e.g., a large number of robots foraging for many
scattered deposits distributed near to a base that handles
unloaded deposits slowly), the performance of non-social
swarms was considerably greater than that of control swarms
(up to &= +40% in the most extreme Scatter25 environ-
ments).

The performance of social self-regulatory swarms rela-
tive to the control swarms follows a similar but more com-
plicated pattern (Figure 5). Again, where congestion tended
to be severe, the performance of social swarms was better
than that of control swarms (up to ~ +67% in the most ex-
treme Scatter25 environments). Moreover, in these scenar-
ios, social swarms did even better than non-social swarms,
achieving an advantage over the control swarms that was of-
ten between 20% and 40% larger than that achieved by non-
social swarms. Conversely, in scenarios where congestion
was very mild, the performance of social swarms was worse
than that of control swarms and non-social swarms by as
much as —14%.

In general, there were two factors that affected the ad-
vantage of self-regulation: the amount of congestion in the
base and the distribution of deposits in the environment. For
instance, self-regulation was most advantageous in Scatter
scenarios when deposits were close to the base (i.e., when
the control swarms experienced high congestion due to short
trips between the base and the deposits), and, more impor-
tantly, when foraging effort could be refocussed in a new
direction once a particular part of the unloading bay became
congested. On the other hand, self-regulation was not as ef-
fective in the Heap1 scenarios, where all resources were con-
centrated in a single location. Robots in the self-regulated
swarms could still become idle when pellets accumulated,
but recruitment could only take place again when the forag-
ing robots measured a low unloading time, i.e., when enough
of the pellets that had been unloaded in the part of the un-
loading bay between the deposit heap and the resting bay
had disappeared. This was a particular problem for the
swarms with social self-regulation, where the information
about congestion spread quickly through the swarm, causing
a majority of the robots to become idle. Unlike in non-social
swarms, the number of foraging robots was often very low
and it took the social swarms a long time to recover from
inactivity.
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Figure 6: Resource collection performance of self-regulated
swarms relative to control swarms under unlimited and lim-
ited energy conditions for scenarios with (a, ¢) mild conges-
tion, and (b, d) severe congestion.

Resource collection

In this section we report the average performance (now in
terms of total amount of resource collected) of the self-
regulated swarms relative to the average performance of the
control swarms. As in the previous section, we consider
cases with mild congestion (Np = 25,ty = 5s) and severe
congestion (Nr = 50,ty = 20s). We first consider exper-
iments where the total energy available to the swarms was
unlimited. We then report on experiments with energy limi-
tation, where robots ceased foraging as soon as their swarm
had consumed Nr x E’ units of energy, where E’ was the
energy limit per robot. Figure 6 depicts our results.

Although both types of self-regulated swarms were often
more energy efficient than control swarms, when energy was
unlimited they did not tend to collect more resource than the
control swarms. Non-social self-regulators tended to collect
a similar quantity to control swarms, whereas social self-
regulators collected less resource than control swarms when
congestion was mild (Figure 6a,c)

When swarm energy was limited, non-social self-
regulators tended to either collect significantly more re-
source than control swarms (when congestion was severe),
or roughly the same amount as control swarms (when con-
gestions was mild). For instance, when E’ was set to 8000
and when a large number of robots foraged from a base that

handled unloaded deposits slowly in the Scatter25 scenario,
non-social swarms foraged up to 30% more resource rela-
tive to control swarms (Figure 6b). In experiments where
congestion was mild, the advantage of non-social swarms
was less pronounced. For instance, when a small number of
robots foraged from a base that handled unloaded deposits
quickly, non-social self-regulated swarms only collected up
to 10% more resource than control swarms (Figure 6a).

Social self-regulation again led to more extreme variation
in performance when the swarm energy was limited. When
congestion was severe, social self-regulators tended to col-
lect significantly more resource than either control swarms
or non-social self-regulators (Figure 6b and 6d). Whereas
when congestion was mild, they collected roughly the same
amount as control swarms and social self-regulators (Fig-
ure 6a and 6¢). For instance, in Scatter25, social-self-
regulators collected approximately 55% more resource than
the control swarms when E’ = 8000 (Figure 6b). On the
other hand, in Heapl, where the robots could not spread
their foraging effort to other directions once a particular
part of the unloading bay became congested, social self-
regulators collected on average 10% less resource than the
control swarms when congestion was mild (Figure 6¢). In
both cases, variation in performance within a scenario was
higher for social swarms.

When the value of E’ was higher or lower than 8000,
the relative performance of both self-regulated swarms de-
creased linearly but was never lower than when the swarm
energy was unlimited.

Discussion and Conclusions

We have shown that swarms can regulate their foraging ac-
tivity effectively on the basis of locally perceived levels of
congestion. The solution presented in this paper extends
previous studies of the Response Threshold Model (RTM)
(e.g., Liu et al., 2007; Dahl et al., 2009; Yang et al., 2009),
applying it for the first time to foraging swarms that use re-
cruitment and investigating the effect of information sharing
during decentralised congestion estimation.

We compared three types of swarms: control swarms with
no self-regulation, swarms with non-social self-regulation
(where robots become idle when they directly sense severe
congestion), and swarms with social self-regulation (where
robots instruct their team mates to become idle when they
detect severe congestion). The swarms were assessed across
a number of experimental scenarios, where we varied the
number of deposits (Np), deposit distance from the base
(D), the number of robots (Ny), and the time it took for ac-
cumulated material to be consumed at the base (tz). We
evaluated the performance of the swarms in terms of en-
ergy efficiency, C, and showed that C' can be improved
through self-regulation especially in environments where the
collected material accumulates in the base quickly (because
D is small, or Ny or ty are large) or where the swarms



can exploit multiple foraging directions simultaneously (i.e.,
because Np is large). Additionally, we demonstrated that
self-regulated swarms collect more resources than control
swarms when the energy supply available to the robots is
limited.

There were notable differences in how swarms with non-
social and social self-regulation performed in the various ex-
perimental scenarios. By comparison with control swarm
behaviour, non-social self-regulation led to mediocre perfor-
mance improvements or equivalent levels of performance in
some scenarios. On the other hand, social self-regulation
achieved large improvements over control swarms in sce-
narios where pellets accumulated quickly, but were also out-
performed by control swarms in scenarios where congestion
was not as severe or where all resources were concentrated
in a single location. In our work on information flow in for-
aging swarms that use recruitment (Pitonakova et al., 2016),
we argued that fast information flow can lead to patholog-
ical states of a whole swarm that prevent the swarm from
responding to changes in the environment. Furthermore, we
demonstrated that while swarms with fast information flow
tend to perform extremely well in a limited number of envi-
ronments but perform poorly in others, swarms with slow in-
formation flow tend to perform well across a broad spectrum
of scenarios. In this paper, we extend this argument to sce-
narios involving congestion. Information flow was slower in
swarms of non-social self-regulators which relied on their
own local perception alone, and it was faster in swarms
of social self-regulators which communicated information
about congestion to one another. As was the case in (Piton-
akova et al., 2016), slow information flow led to behaviour
suitable for a larger number of experimental scenarios, while
fast information flow caused more extreme variation in per-
formance meaning it was only appropriate in a restricted set
of scenarios.

Consequently, robots inspired by our social self-regulated
swarms could be applied effectively in appropriate well-
defined foraging or logistic tasks, for example to deliver
items between various locations in warehouses and hospi-
tals, or to collect crops. In these scenarios, the relevant task
parameters (swarm size, processing time of collected items,
etc.) are known upfront. However, if we were to employ
robot swarms in an unknown or more variable environment,
e.g., work sites on different planets or underwater, we would
need to take into account the fact that while fast informa-
tion flow can lead to beneficially fast response times, it can
also cause significantly suboptimal performance under cer-
tain conditions. In such applications, self-regulation that is
more subtle and occurs in a more localised fashion would
be more suitable, not because of the ability of the swarms
to perform work faster or more efficiently, but because such
collective behaviour is more scalable. It might also be ad-
vantageous to create an adaptive algorithm, where robots al-
ter their own self-regulatory behaviours (for example their

willingness to exchange information with others, their wak-
ing up probability, etc.), in order to achieve a level of infor-
mation flow within the swarm that varies dynamically in a
way that is appropriate to the swarm’s current environment.
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