Behaviour-Data Relations
Modelling Lanquage For Multi-

Robot Control Algorithms

Lenka Pitonakova Seth Bullock
Richard Crowder

Ele University of
BRISTOL

UNIVERSITY OF

Southampton

Multi-robot systems

= Collective performance emerges as a result of interactions
among robots and between robots and their environment

= “Bottom-up” design: How to program the micro behaviour of
robots for desired macro-level outcome?

* Imperfect knowledge of the task / environment
= Localised interactions

= Parallel code execution

Modelling robot code

= A good modeling language is essential for:
= Designing algorithms (faster on paper than in code)
= Representing algorithms (facilitate quick understanding)
= Reproducing algorithms (based on good representations)

= Visual representation more accessible than text

Ease of understanding vs accuracy concerns

Existing methods

Algorithm: Search for worksites in the environment. Perform work
them. Recruit nearby robots while working (e.g. customer servicing).

Robot 1 Robot 2
I scout() scout()
worksite depleted . work
Scout |¢ P Robot * + | Worksite 0
- stores, Data
worksite found - worksiteData sends, : broadcast recruitment
or robot recruited + scout() receives | -location signal
+ work() - utility <
Worker + + broadcast() send acknowledgement
————>
Broadcaster >
send worksite data

. work() . work()
v

v

Statechart Class diagram Sequence chart

Existing methods

These methods were invented when programs were simpler
and more linear

= Problems for multi-robot systems:

= Assumptions of finite-state machines with well-defined,
predictable interactions

= No explicit representation of data or of influences external to the
system

BDRML

= A BDRML diagram consists of visual and textual description
(1-to-1 correspondence, can be used together or separately)

= Primitives (behaviours, data structures)

= Conditional relations between them

= Describes robot behaviours, not states.
= “Work” behaviour versus “Worker” state

= Model finite-state machines, neural network controllers,
behaviour-based controllers, etc.

= Both behaviours and data are primitives, so they can relate to
each other
= Explicit representation of what information is communicated and
where it is stored

= Combines capabilities of statecharts and class diagrams (describe
control algorithm) and of sequence charts (describe

communication)

= Allows to specify relations between behaviours and data
external to a robot’s memory

= Represent communication between robots and interactions with
their environment

BDRML primitives

Behaviour:

Behaviour name

Internal data structure:

External data structure:

Data name

b = Behaviour name

d; = Data name : data type

d. = Data name : data type

BDRML relations

Transition:

b4
Read:

by [«
Write:

b4

b1

trans(b4,b,)

read(dq,b4)

write(f: d4,by)

Write(+1 . d1 ,b1)

Receive:

receive(d4,by)

send(f: d4,by)

copy(d4,dy)

update(f: d4)

BDRML conditions

A function as a condition:
o f trans(b4,b,) : {f}

by P——b by

Existence and non-existence of data as a condition:

trans(bq,by) : { 3d4}

by D——> b

trans(bq,b,) : { Ad,}

BDRML conditions

Current behaviour as a condition:

copy(d,,dp) : {b=b4}
(o ——

b1

A textual description as a condition:

) “at a worksite”

by D———> by

trans(b4,b,) : {"at a worksite”}

“Always” condition:

write(d,by) : {*}
b4

BDRML conditions

A combination of conditions:

P “at a worksite” trans(bq,b,) : {"at a worksite”,

by [>———> b, A

\
\
\
\

BDRML vs existing methods

Algorithm: Search for worksites in the environment. Perform work
them. Recruit nearby robots while working (e.g. customer servicing).

Robot 1 Robot 2
I scout() scout()
worksite depleted . work
Scout |¢ P Robot * + | Worksite 0
- stores, Data
worksite found - worksiteData sends, : broadcast recruitment
or robot recruited + scout() receives | -location signal
+ work() - utility <
Worker + + broadcast() send acknowledgement
————>
Broadcaster >
send worksite data

. work() . work()
v

v

Statechart Class diagram Sequence chart

Scout

“worksite depleted” /’Y

Worksite
location

Work <

/

/’
“Scout encountered” ’

B = {Scout, Work}

D; = {Worksite location : object}

trans(Scout, Work) : {p(F), 3 Worksite location}
trans(Work, Scout) : {*worksite depleted”}
write(Worksite location, Work) : {*}

read(Worksite location, Work) : {*}

send(Worksite location, Work) : {“Scout encountered”}

= Explicit representation of recruitment:

Send relation between Work and Worksite location

Conditional transition between Scout and Work

Algorithm: Search for worksites in the environment. Use beacons
to store pheromone for navigation and recruitment.

“new beacon

Travel to <" found”

= Pheromone
evaporation

= |nteractions of

robot behaviours
and pheromone

(= el
[}

pheromone

PO
/ oa
Scout [>——p
resource base |~
N/ A
‘resource ==Y
dropped off”
‘worksite “‘worksite
deple'fed - reached”
——<] Travel to _.“new beacon
»| worksite [_found

+1

= Storing

4

i

pheromone values

in robot’s memory
pheromone

C\ |

Thank you

= Find our paper: L. Pitonakova, R. Crowder, S. Bullock:
Behaviour-Data Relations Modelling Language For Multi-

Robot Control Algorithms

= Reach me on contact@lenkaspace.net

