Southampton

School of Electronics and Computer Science

Task Allocation in Foraging Robot Swarms: The Role of Information Sharing

Lenka Pitonakova, Richard Crowder and Seth Bullock

Agents, Interaction and Complexity Group

• **Repeatedly** adjust the number of working and idle robots in order to improve **the energy efficiency** of the swarm when **congestion** prevents robots from working

- Item collection and delivery
- Autonomous cars, robotic taxis
- Congestion prevention

- Congestion can result from
 - Size of the robot swarm
 - Nature of the task
- Desired response
 - Decrease the number of workers to prevent or deal with congestion
 - Increase the number of workers when the work space has cleared out
 - Adapt to changing congestion conditions

- How can a robot swarm prevent congestion in a decentralised manner?
- Why should it?
 - Save energy
 - Perform more work

Our model

- Foraging in continuous space from deposits with unlimited volume
- Heap-N: N deposits,
 D m away from the base

Scatter-N: N deposits,
 D±5 m away from the base

Our model

- Unloading bay
 - Robots drop off collected material
 - Material handling time t_H
- Observation bay
 - Unemployed robots wait to be recruited
- Resting bay
 - Idle robots wait there

Our model

- Three swarm types:
 - Control: no self-regulation
 - Non-social self-regulation
 - Robots become idle when they sense congestion
 - Social self-regulation
 - Robots signal others to become idle upon sensing congestion

The control swarm

Non-social self-regulation

Social self-regulation

Performance measures

- The total amount of resource collected in 4 hours
- Swarm energy efficiency

$$C = R / E$$

R: Total amount of resource collected

E: Total amount of energy spent by the swarm

• A robot normally spends 1 unit of energy per second. It spends 0 energy per second when it is idle.

The impact of congestion on foraging of control swarms

- The control swarms collect less resource due to congestion
- Performance affected more severely when:
 - More deposits
 - Smaller D
 - More robots
 - Pellets disappear slower

Energy efficiency Non-social self-regulation

- Higher energy efficiency improvement over control swarms when congestion is severe
- Energy efficiency similar as control swarms when small amount of congestion

School of Electronics and Computer Science

Energy efficiency Social self-regulation

- Higher energy efficiency improvement when congestion is severe
 - More than with non-social selfregulation
- Lower energy efficiency when small amount of congestion or when there is 1 deposit

• Do self-regulating swarms collect more resource than the control swarms [when swarm energy is limited]?

- Non-social selfregulation:
 - Improved performance when congestion is severe and energy is limited
 - Similar performance when congestion is mild or energy is unlimited

- Social selfregulation:
 - More improved performance when congestion is severe and energy is limited
 - Worse performance when congestion is mild and energy is unlimited

Conclusion

- How can a foraging robot swarm prevent congestion in a decentralised manner?
- Non-social vs social self-regulation
 - Structure of the environment?
 - Amount of congestion?
 - Energy constraints?

Conclusion

- Swarms with social self-regulation react strongly
 - Suitable in appropriate, known scenarios: severe congestion, limited energy
 - Bad performance when congestion is less severe or energy is unlimited
- Swarms with *non-social* self-regulation react more subtly
 - Suitable when we expect low congestion, unlimited swarm energy, or *when we do not know* what to expect

Information-based view

- Information flow: how fast does information [about congestion] spread across the swarm
 - Slower in swarms with non-social self-regulation, compared to swarms with social self-regulation
- **Slow** information flow leads to **smaller variations** in swarm performance
 - Reaction to congestion & deposit profitability:

<u>Swarm Intelligence</u>

..... March 2016, Volume 10, <u>Issue 1</u>, pp 33–63

Information flow principles for plasticity in foraging robot swarms

Information-based view

- What is the appropriate information flow that fits the dynamics of the environment and of the task?
 - Slow: mediocre improvements, rarely damages performance
 - Fast: extreme results
- Need to study information flow in decentralised, embodied systems
- Understand **the costs** of searching for, sharing and utilising of information

Thank you. Questions?