

SPECIAL CREDITS

University of Sussex, Inman Harvey

ARTIFICIAL LIFE (ALIFE)

- "Life-as-it-is"
- "Life-as-it-could-be"
- Chris Langton

- What distinguishes life from no-life?
- Does life have to be carbon-based?
- Can life exist inside of a computer?

How do we know that what we perceive as "living" truly "lives"?

THE DIGESTING DUCK (1739)

The machine

The imaged mechanisms

The actual mechanism was very simple!

WHEN WE CONSIDER SOMETHING TO BE "ALIVE", HOW DO WE KNOW IT IS TRUE?

- "Food" consumption / waste?
- Purposeful motion?
- Reproduction?
- Death?
- Homeostasis?
- Agency? (Embodiment? Situatedness?)

- Simulation of "life" based on a cellular automaton
- 2D grid world
- A cell can be on or off
- It looks at immediate neighbors to determine its next state

Only 3 rules:

- If you have exactly 2 'on' neighbours (i.e., 2 blacks) stay the same
- If you have exactly 3 'on' neighbours you will be 'on' (black) the next time step (i.e., change to on if you are blank, and remain on if you already are)
- If you have less than 2, or more than 3 on neighbours you will be off (blank) the next time step

"Sequences" appear

"Fountain"

"Mold"

"Blinker"

"Blinker Fuse"

"Glider gun"

- Is Glider a good model for life?
 - Agency, movement, situatedness
- Is Glider alive?

• If you were a Glider, how would you test if you are inside of a cellular automaton?

- A computer program from 80's, written in assembly language
- Artificial "organisms" (programs) competed for "existence" (space in the computer memory) and "food" (computer's power)
 - Programs could move to different parts of memory
 - Programs could overwrite memory used by other programs, effectively "killing" them
 - Programs could replicate (copy themselves), with random mutations in their code, creating new "life forms"

- Artificial evolution happened
 - Competition for resources = survival of the fittest
 - Replication + mutation = new species (new programs, new code, new behaviour)

- Coevolution of survival strategies
 - Parasites appeared that could "borrow" replication code of other programs (by reading their code and executing it)
 - Some programs developed "immunity" against them

- Is is a good model for evolution?
- Are the programs alive?
 - "Food" consumption, situatedness, replication, death
- Is there an analogy between "us and the Universe" and "tierra programs and the computer memory"?

APPLICATIONS OF ARTIFICIAL LIFE

- Agent-based models to explain biology, evolution, physics, chemistry
- Study of artificial intelligence

- Swarm robotics: control algorithms
- **Swarm cognition**: the analogy between brains and societies

THANK YOU. QUESTIONS?

Video references:

Fountain: https://www.youtube.com/watch?v=q73z9-I2-0g

Mold: https://www.youtube.com/watch?v=1-PZue1Cd_w

Blinker: https://www.youtube.com/watch?v=OrCTmfQWCmQ

Blinker fuse: https://www.youtube.com/watch?v=Yeuz7RISsMl

Glider: https://www.youtube.com/watch?v=LA-RPmSmHg8

Glider gun: https://www.youtube.com/watch?v=GrIO5RJ76D0