

RECRUITMENT NEAR WORKSITES FACILITATES ROBUSTNESS OF FORAGING E-PUCK SWARMS TO GLOBAL POSITIONING NOISE

Lenka Pitonakova, Alan Winfield, Richard Crowder

Overview

- Five e-pucks need to search the arena
 and find randomly-distributed worksites
- They then carry virtual resource units from worksites to the base until all worksites are depleted
- Do robot swarms where robots recruit each other perform better?
- How does noise in the GPS affect the swarms?

Semi-virtual environment

- Physical interactions
- Data handled by a server
 - Robot tracking and positioning
 - World state
 - Communication

Outcomes

- In small noiseless
 environments, the choice of a
 foraging strategy does not
 matter
- When GPS noise is added, robots may loose track of foraging sites

Outcomes

- Recruitment near worksites helps the swarm maintain correct information about worksite locations
- Inherent sensory-motor noise makes obstacle avoidance harder in reality than in simulation

Experiment details

Parameter	Value
Number of robots	5
Arena size	2 × 1.5 m
Base radius	0.4 m
Worksite radius	0.1 m
Number of worksites	{1,3,12}
Min. worksite distance from base edge	{0.7,1.4} m
Total reward	48
Robot worksite sensor range	0.25 m
Robot communication range	1.25 m

Semi-virtual environment: Positioning

- Vicon trackingsystem connectedto the Server
- Server sends X,Y
 position to each
 robot every 1/10
 seconds

Semi-virtual environment: World state

- The Server knows worksite locations and resource left
- Robots that think
 they are at
 worksites request
 resource units from
 the Server

Semi-virtual environment: Recruitment

- Recruiters send
 recruitment signals
 and worksite
 location to the
 Server
- The Server sends
 the data to robots
 near the recruiter

Robot control algorithms: Solitary

- Robots start in the base and scout for worksites
- When a robot finds a worksite, it tries to load resource from it
- The robot delivers
 resources to the base
 until the worksite is
 depleted or not found

BDRML representation of the Solitary controller

Robot control algorithms: Broadcaster

- Based on the Solitary controller, but robots also recruit each other
- While a robot is near
 a worksite, it sends
 recruitment signals with
 believed worksite
 location to nearby
 scouts

BDRML representation of the Broadcaster controller

Foraging performance

- Environments with different number of worksites (N_W) and worksite distance from the base (D)
- When there is no noise, both controllers perform similarly
- Noise increases completion time. The Solitary swarm is more affected.

Foraging performance

- As a result of noise, Solitary swarm exhibits a larger increase in:
 - Average completion time when D is large
 - $lue{}$ Completion time variance when N_{W} is small

Relation to previous work

- Similar results than in larger simulated environments
- Obstacle avoidance and dealing with congestion are more difficult in real world due to inherent noise
- Controller type affects
 what kind of noise a swarm
 can be robust to

Task completion time in a larger simulation

RECRUITMENT NEAR WORKSITES FACILITATES ROBUSTNESS OF FORAGING E-PUCK SWARMS TO GLOBAL POSITIONING NOISE

Find out more:

Designing Robot Swarms project:

https://rebrand.ly/designingSwarms

The BDRML language

https://rebrand.ly/bdrml

Lenka Pitonakova, Alan Winfield, Richard Crowder

Acknowledgements

This work was supported by EPSRC grants EP/G03690X/1, EP/N509747/1 and EP/R004757/1 and by Thales Group. A video accompanying this paper is available on the IROS 2018 proceedings website. The source code and data are available on https://doi.org/10.5258/SOTON/D0388.

We would like to thank Wenguo Liu for providing his robot and computer programs that served as a basis for the programs used here.

